These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 2587628)

  • 1. Use of a fibre-optic hydrophone in measuring acoustic parameters of high power hyperthermia transducers.
    Chan HL; Chiang KS; Price DC; Gardner JL; Brinch J
    Phys Med Biol; 1989 Nov; 34(11):1609-22. PubMed ID: 2587628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress in developing a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect.
    Zeqiri B; Zauhar G; Hodnett M; Barrie J
    Ultrasonics; 2011 May; 51(4):420-4. PubMed ID: 21163509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic field characterization of a clinical magnetic resonance-guided high-intensity focused ultrasound system inside the magnet bore.
    Kothapalli SVVN; Altman MB; Partanen A; Wan L; Gach HM; Straube W; Hallahan DE; Chen H
    Med Phys; 2017 Sep; 44(9):4890-4899. PubMed ID: 28626862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone.
    Zhou Y; Zhai L; Simmons R; Zhong P
    J Acoust Soc Am; 2006 Aug; 120(2):676-85. PubMed ID: 16938956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focused ultrasound transducer spatial peak intensity estimation: a comparison of methods.
    Civale J; Rivens I; Shaw A; Ter Haar G
    Phys Med Biol; 2018 Mar; 63(5):055015. PubMed ID: 29437152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic power measurement of high intensity focused ultrasound in medicine based on radiation force.
    Shou W; Huang X; Duan S; Xia R; Shi Z; Geng X; Li F
    Ultrasonics; 2006 Dec; 44 Suppl 1():e17-20. PubMed ID: 16860359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous delivery of electron beam therapy and ultrasound hyperthermia using scanning reflectors: a feasibility study.
    Moros EG; Straube WL; Klein EE; Yousaf M; Myerson RJ
    Int J Radiat Oncol Biol Phys; 1995 Feb; 31(4):893-904. PubMed ID: 7860403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields.
    Parsons JE; Cain CA; Fowlkes JB
    J Acoust Soc Am; 2006 Mar; 119(3):1432-40. PubMed ID: 16583887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glass-windowed ultrasound transducers.
    Yddal T; Gilja OH; Cochran S; Postema M; Kotopoulis S
    Ultrasonics; 2016 May; 68():108-19. PubMed ID: 26938326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Considerations for Choosing Sensitive Element Size for Needle and Fiber-Optic Hydrophones-Part II: Experimental Validation of Spatial Averaging Model.
    Wear KA; Liu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):340-347. PubMed ID: 30530327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic power calibrations of cylindrical intracavitary ultrasound hyperthermia applicators.
    Hynynen K
    Med Phys; 1993; 20(1):129-34. PubMed ID: 8455491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward virtual biopsy through an all fiber optic ultrasonic miniaturized transducer: a proposal.
    Acquafresca A; Biagi E; Masotti L; Menichelli D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1325-35. PubMed ID: 14609072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure.
    Morris P; Hurrell A; Shaw A; Zhang E; Beard P
    J Acoust Soc Am; 2009 Jun; 125(6):3611-22. PubMed ID: 19507943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new laser-ultrasound transducer for medical applications.
    Chen QX; Dewhurst RJ; Payne PA; Wood B
    Ultrasonics; 1994 Jul; 32(4):309-13. PubMed ID: 8023421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction for Spatial Averaging Artifacts in Hydrophone Measurements of High-Intensity Therapeutic Ultrasound: An Inverse Filter Approach.
    Wear KA; Howard SM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Sep; 66(9):1453-1464. PubMed ID: 31247548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic performance and clinical use of a fibreoptic hydrophone.
    Coleman AJ; Draguioti E; Tiptaf R; Shotri N; Saunders JE
    Ultrasound Med Biol; 1998 Jan; 24(1):143-51. PubMed ID: 9483782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor.
    Zhou Y
    Med Eng Phys; 2015 Mar; 37(3):335-40. PubMed ID: 25659300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity.
    Wear KA; Gammell PM; Maruvada S; Liu Y; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):62-75. PubMed ID: 24402896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain.
    Adams MS; Salgaonkar VA; Scott SJ; Sommer G; Diederich CJ
    Med Phys; 2017 Oct; 44(10):5339-5356. PubMed ID: 28681404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Considerations for Choosing Sensitive Element Size for Needle and Fiber-Optic Hydrophones-Part I: Spatiotemporal Transfer Function and Graphical Guide.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):318-339. PubMed ID: 30530326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.