BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25876512)

  • 1. Mechanism Underlying the Analgesic Effect Exerted by Endomorphin-1 in the rat Ventrolateral Periaqueductal Gray.
    Chen T; Li J; Feng B; Hui R; Dong YL; Huo FQ; Zhang T; Yin JB; Du JQ; Li YQ
    Mol Neurobiol; 2016 Apr; 53(3):2036-2053. PubMed ID: 25876512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Microinjection of endomorphin-1 in the ventrolateral periaqueductal gray induces descending inhibition of cardiac nociception by activating μ-opioid receptor in rats].
    Han M; Liu X; Du J
    Nan Fang Yi Ke Da Xue Xue Bao; 2018 Aug; 38(9):1066-1070. PubMed ID: 30377099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potentiation of the excitatory action of NMDA in ventrolateral periaqueductal gray by the mu-opioid receptor agonist, DAMGO.
    Kow LM; Commons KG; Ogawa S; Pfaff DW
    Brain Res; 2002 May; 935(1-2):87-102. PubMed ID: 12062477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Labetalol facilitates GABAergic transmission to rat periaqueductal gray neurons via antagonizing beta1-adrenergic receptors--a possible mechanism underlying labetalol-induced analgesia.
    Xiao C; Zhou C; Atlas G; Delphin E; Ye JH
    Brain Res; 2008 Mar; 1198():34-43. PubMed ID: 18262504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperpolarization by opioids acting on mu-receptors of a sub-population of rat periaqueductal gray neurones in vitro.
    Chieng B; Christie MJ
    Br J Pharmacol; 1994 Sep; 113(1):121-8. PubMed ID: 7812601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition by opioids acting on mu-receptors of GABAergic and glutamatergic postsynaptic potentials in single rat periaqueductal gray neurones in vitro.
    Chieng B; Christie MJ
    Br J Pharmacol; 1994 Sep; 113(1):303-9. PubMed ID: 7812626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotinic modulation of descending pain control circuitry.
    Umana IC; Daniele CA; Miller BA; Abburi C; Gallagher K; Brown MA; Mason P; McGehee DS
    Pain; 2017 Oct; 158(10):1938-1950. PubMed ID: 28817416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connections between EM2-containing terminals and GABA/μ-opioid receptor co-expressing neurons in the rat spinal trigeminal caudal nucleus.
    Li MY; Wu ZY; Lu YC; Yin JB; Wang J; Zhang T; Dong YL; Wang F
    Front Neural Circuits; 2014; 8():125. PubMed ID: 25386121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the {mu} opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala.
    Finnegan TF; Chen SR; Pan HL
    J Pharmacol Exp Ther; 2005 Feb; 312(2):441-8. PubMed ID: 15388784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiovascular effects of microinjections of opioid agonists into the 'Depressor Region' of the ventrolateral periaqueductal gray region.
    Keay KA; Crowfoot LJ; Floyd NS; Henderson LA; Christie MJ; Bandler R
    Brain Res; 1997 Jul; 762(1-2):61-71. PubMed ID: 9262159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DAMGO depresses inhibitory synaptic transmission via different downstream pathways of μ opioid receptors in ventral tegmental area and periaqueductal gray.
    Zhang W; Yang HL; Song JJ; Chen M; Dong Y; Lai B; Yu YG; Ma L; Zheng P
    Neuroscience; 2015 Aug; 301():144-54. PubMed ID: 26047721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tolerance to the antinociceptive effect of morphine in the absence of short-term presynaptic desensitization in rat periaqueductal gray neurons.
    Fyfe LW; Cleary DR; Macey TA; Morgan MM; Ingram SL
    J Pharmacol Exp Ther; 2010 Dec; 335(3):674-80. PubMed ID: 20739455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional and ultrastructural neuroanatomy of interactive intratectal/tectonigral mesencephalic opioid inhibitory links and nigrotectal GABAergic pathways: involvement of GABAA and mu1-opioid receptors in the modulation of panic-like reactions elicited by electrical stimulation of the dorsal midbrain.
    Ribeiro SJ; Ciscato JG; de Oliveira R; de Oliveira RC; D'Angelo-Dias R; Carvalho AD; Felippotti TT; Rebouças EC; Castellan-Baldan L; Hoffmann A; Corrêa SA; Moreira JE; Coimbra NC
    J Chem Neuroanat; 2005 Dec; 30(4):184-200. PubMed ID: 16140499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nifedipine potentiates the antinociceptive effect of endomorphin-1 microinjected into the periaqueductal gray in rats.
    Cousins MJ; Hao S; Mamiya K; Takahata O; Iwasaki H; Mata M; Fink DJ
    Anesth Analg; 2003 Apr; 96(4):1065-1071. PubMed ID: 12651662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic mu-opioid and 5-HT1A presynaptic inhibition of GABA release in rat periaqueductal gray neurons.
    Kishimoto K; Koyama S; Akaike N
    Neuropharmacology; 2001 Oct; 41(5):529-38. PubMed ID: 11587707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origins of endomorphin-immunoreactive fibers and terminals in different columns of the periaqueductal gray in the rat.
    Chen T; Hui R; Wang XL; Zhang T; Dong YX; Li YQ
    J Comp Neurol; 2008 Jul; 509(1):72-87. PubMed ID: 18421704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opioid receptor internalization contributes to dermorphin-mediated antinociception.
    Macey TA; Ingram SL; Bobeck EN; Hegarty DM; Aicher SA; Arttamangkul S; Morgan MM
    Neuroscience; 2010 Jun; 168(2):543-50. PubMed ID: 20394808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How opioids inhibit GABA-mediated neurotransmission.
    Vaughan CW; Ingram SL; Connor MA; Christie MJ
    Nature; 1997 Dec; 390(6660):611-4. PubMed ID: 9403690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for an intrinsic mechanism of antinociceptive tolerance within the ventrolateral periaqueductal gray of rats.
    Lane DA; Patel PA; Morgan MM
    Neuroscience; 2005; 135(1):227-34. PubMed ID: 16084660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endomorphin-1 and endomorphin-2, endogenous ligands for the mu-opioid receptor, inhibit electrical activity of rat rostral ventrolateral medulla neurons in vitro.
    Chu XP; Xu NS; Li P; Wang JQ
    Neuroscience; 1999; 93(2):681-6. PubMed ID: 10465452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.