These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 25877490)

  • 1. Computational docking simulations of a DNA-aptamer for argininamide and related ligands.
    Albada HB; Golub E; Willner I
    J Comput Aided Mol Des; 2015 Jul; 29(7):643-54. PubMed ID: 25877490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulation of the induced-fit binding process of DNA aptamer and L-argininamide.
    Lin PH; Tsai CW; Wu JW; Ruaan RC; Chen WY
    Biotechnol J; 2012 Nov; 7(11):1367-75. PubMed ID: 22678933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations on the interface of nucleic acid aptamers and binding targets.
    Cai S; Yan J; Xiong H; Liu Y; Peng D; Liu Z
    Analyst; 2018 Nov; 143(22):5317-5338. PubMed ID: 30357118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing ATP/ATP-Aptamer or ATP-Aptamer Mutant Complexes by Microscale Thermophoresis and Molecular Dynamics Simulations: Discovery of an ATP-Aptamer Sequence of Superior Binding Properties.
    Biniuri Y; Albada B; Willner I
    J Phys Chem B; 2018 Oct; 122(39):9102-9109. PubMed ID: 30188731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural features of the L-argininamide-binding DNA aptamer studied with ESI-FTMS.
    Guo X; Liu Z; Liu S; Bentzley CM; Bruist MF
    Anal Chem; 2006 Oct; 78(20):7259-66. PubMed ID: 17037930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetic basis of molecular recognition in a DNA aptamer.
    Bishop GR; Ren J; Polander BC; Jeanfreau BD; Trent JO; Chaires JB
    Biophys Chem; 2007 Mar; 126(1-3):165-75. PubMed ID: 16914261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomolecular sensor based on fluorescence-labeled aptamer.
    Ozaki H; Nishihira A; Wakabayashi M; Kuwahara M; Sawai H
    Bioorg Med Chem Lett; 2006 Aug; 16(16):4381-4. PubMed ID: 16757168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods and Applications of In Silico Aptamer Design and Modeling.
    Buglak AA; Samokhvalov AV; Zherdev AV; Dzantiev BB
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33182550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Aptamer-Small-Molecule Interactions Using Metastable States from Multiple Independent Molecular Dynamics Simulations.
    Rodríguez Serrano AF; Hsing IM
    J Chem Inf Model; 2022 Oct; 62(19):4799-4809. PubMed ID: 36134737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beacons Contribute Valuable Empirical Information to Theoretical 3-D Aptamer-Peptide Binding.
    Bruno JG; Phillips T
    J Fluoresc; 2019 May; 29(3):711-717. PubMed ID: 31044327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent aptasensors based on conformational adaptability of abasic site-containing aptamers in combination with abasic site-binding ligands.
    Xu Z; Sato Y; Nishizawa S; Teramae N
    Biosens Bioelectron; 2011 Aug; 26(12):4733-8. PubMed ID: 21719270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of l-Argininamide to a DNA Aptamer: A Volumetric Study.
    Liu L; Stepanian L; Dubins DN; Chalikian TV
    J Phys Chem B; 2018 Aug; 122(31):7647-7653. PubMed ID: 30011203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR resonance assignments for the tetramethylrhodamine binding RNA aptamer 3 in complex with the ligand 5-carboxy-tetramethylrhodamine.
    Duchardt-Ferner E; Juen M; Kreutz C; Wöhnert J
    Biomol NMR Assign; 2017 Apr; 11(1):29-34. PubMed ID: 27730489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure determination and binding kinetics of a DNA aptamer-argininamide complex.
    Robertson SA; Harada K; Frankel AD; Wemmer DE
    Biochemistry; 2000 Feb; 39(5):946-54. PubMed ID: 10653638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction, docking study and molecular simulation of 3D DNA aptamers to their targets of endocrine disrupting chemicals.
    Zhang W; Yang F; Ou D; Lin G; Huang A; Liu N; Li P
    J Biomol Struct Dyn; 2019 Oct; 37(16):4274-4282. PubMed ID: 30477404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifaceted analyses of the interactions between human heart type fatty acid binding protein and its specific aptamers.
    Kakoti A; Goswami P
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt A):3289-3299. PubMed ID: 27545084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of aptamer-based sensing platform using triple-helix molecular switch.
    Zheng J; Li J; Jiang Y; Jin J; Wang K; Yang R; Tan W
    Anal Chem; 2011 Sep; 83(17):6586-92. PubMed ID: 21793587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of Experimental Parameters to Explore Small-Ligand/Aptamer Interactions through Use of (1) H NMR Spectroscopy and Molecular Modeling.
    Souard F; Perrier S; Noël V; Fave C; Fiore E; Peyrin E; Garcia J; Vanhaverbeke C
    Chemistry; 2015 Oct; 21(44):15740-8. PubMed ID: 26356596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Simulation Analysis of Anti-MUC1 Aptamer and Mucin 1 Peptide Binding.
    Rhinehardt KL; Srinivas G; Mohan RV
    J Phys Chem B; 2015 Jun; 119(22):6571-83. PubMed ID: 25963836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the malleability of RNA aptamers.
    Ilgu M; Wang T; Lamm MH; Nilsen-Hamilton M
    Methods; 2013 Sep; 63(2):178-87. PubMed ID: 23535583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.