These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
554 related articles for article (PubMed ID: 25877867)
1. The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon. von der Malsburg K; Shao S; Hegde RS Mol Biol Cell; 2015 Jun; 26(12):2168-80. PubMed ID: 25877867 [TBL] [Abstract][Full Text] [Related]
2. Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex. Lyumkis D; Oliveira dos Passos D; Tahara EB; Webb K; Bennett EJ; Vinterbo S; Potter CS; Carragher B; Joazeiro CA Proc Natl Acad Sci U S A; 2014 Nov; 111(45):15981-6. PubMed ID: 25349383 [TBL] [Abstract][Full Text] [Related]
3. Release of Ubiquitinated and Non-ubiquitinated Nascent Chains from Stalled Mammalian Ribosomal Complexes by ANKZF1 and Ptrh1. Kuroha K; Zinoviev A; Hellen CUT; Pestova TV Mol Cell; 2018 Oct; 72(2):286-302.e8. PubMed ID: 30244831 [TBL] [Abstract][Full Text] [Related]
4. Cooperativity between the Ribosome-Associated Chaperone Ssb/RAC and the Ubiquitin Ligase Ltn1 in Ubiquitination of Nascent Polypeptides. Ghosh A; Shcherbik N Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32957466 [TBL] [Abstract][Full Text] [Related]
5. A single Sec61-complex functions as a protein-conducting channel. Kalies KU; Stokes V; Hartmann E Biochim Biophys Acta; 2008 Dec; 1783(12):2375-83. PubMed ID: 18778738 [TBL] [Abstract][Full Text] [Related]
6. Structure and assembly pathway of the ribosome quality control complex. Shao S; Brown A; Santhanam B; Hegde RS Mol Cell; 2015 Feb; 57(3):433-44. PubMed ID: 25578875 [TBL] [Abstract][Full Text] [Related]
7. Ribosome-associated quality-control mechanisms from bacteria to humans. Filbeck S; Cerullo F; Pfeffer S; Joazeiro CAP Mol Cell; 2022 Apr; 82(8):1451-1466. PubMed ID: 35452614 [TBL] [Abstract][Full Text] [Related]
8. The ribosome-bound quality control complex remains associated to aberrant peptides during their proteasomal targeting and interacts with Tom1 to limit protein aggregation. Defenouillère Q; Namane A; Mouaikel J; Jacquier A; Fromont-Racine M Mol Biol Cell; 2017 May; 28(9):1165-1176. PubMed ID: 28298488 [TBL] [Abstract][Full Text] [Related]
9. The Ribosome-Sec61 Translocon Complex Forms a Cytosolically Restricted Environment for Early Polytopic Membrane Protein Folding. Patterson MA; Bandyopadhyay A; Devaraneni PK; Woodward J; Rooney L; Yang Z; Skach WR J Biol Chem; 2015 Nov; 290(48):28944-52. PubMed ID: 26254469 [TBL] [Abstract][Full Text] [Related]
10. Functions and Mechanisms of the Human Ribosome-Translocon Complex. Lang S; Nguyen D; Pfeffer S; Förster F; Helms V; Zimmermann R Subcell Biochem; 2019; 93():83-141. PubMed ID: 31939150 [TBL] [Abstract][Full Text] [Related]
12. Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation. Shao S; von der Malsburg K; Hegde RS Mol Cell; 2013 Jun; 50(5):637-48. PubMed ID: 23685075 [TBL] [Abstract][Full Text] [Related]
13. RPL26/uL24 UFMylation is essential for ribosome-associated quality control at the endoplasmic reticulum. Scavone F; Gumbin SC; DaRosa PA; Kopito RR bioRxiv; 2023 Mar; ():. PubMed ID: 36945571 [TBL] [Abstract][Full Text] [Related]
14. Vms1p is a release factor for the ribosome-associated quality control complex. Zurita Rendón O; Fredrickson EK; Howard CJ; Van Vranken J; Fogarty S; Tolley ND; Kalia R; Osuna BA; Shen PS; Hill CP; Frost A; Rutter J Nat Commun; 2018 Jun; 9(1):2197. PubMed ID: 29875445 [TBL] [Abstract][Full Text] [Related]
15. The nascent polypeptide in the 60S subunit determines the Rqc2-dependency of ribosomal quality control. Mizuno M; Ebine S; Shounai O; Nakajima S; Tomomatsu S; Ikeuchi K; Matsuo Y; Inada T Nucleic Acids Res; 2021 Feb; 49(4):2102-2113. PubMed ID: 33511411 [TBL] [Abstract][Full Text] [Related]
16. NEMF-mediated Listerin-independent mitochondrial translational surveillance by E3 ligase Pirh2 and mitochondrial protease ClpXP. Lv L; Mo J; Qing Y; Wang S; Chen L; Mei A; Xu R; Huang H; Tan J; Li Y; Liu J Cell Rep; 2024 Mar; 43(3):113860. PubMed ID: 38412092 [TBL] [Abstract][Full Text] [Related]
17. Rqc1 and Ltn1 Prevent C-terminal Alanine-Threonine Tail (CAT-tail)-induced Protein Aggregation by Efficient Recruitment of Cdc48 on Stalled 60S Subunits. Defenouillère Q; Zhang E; Namane A; Mouaikel J; Jacquier A; Fromont-Racine M J Biol Chem; 2016 Jun; 291(23):12245-53. PubMed ID: 27129255 [TBL] [Abstract][Full Text] [Related]
18. The UFM1 E3 ligase recognizes and releases 60S ribosomes from ER translocons. Makhlouf L; Peter JJ; Magnussen HM; Thakur R; Millrine D; Minshull TC; Harrison G; Varghese J; Lamoliatte F; Foglizzo M; Macartney T; Calabrese AN; Zeqiraj E; Kulathu Y Nature; 2024 Mar; 627(8003):437-444. PubMed ID: 38383789 [TBL] [Abstract][Full Text] [Related]
19. The Rqc2/Tae2 subunit of the ribosome-associated quality control (RQC) complex marks ribosome-stalled nascent polypeptide chains for aggregation. Yonashiro R; Tahara EB; Bengtson MH; Khokhrina M; Lorenz H; Chen KC; Kigoshi-Tansho Y; Savas JN; Yates JR; Kay SA; Craig EA; Mogk A; Bukau B; Joazeiro CA Elife; 2016 Mar; 5():e11794. PubMed ID: 26943317 [TBL] [Abstract][Full Text] [Related]
20. Structure and function of the yeast listerin (Ltn1) conserved N-terminal domain in binding to stalled 60S ribosomal subunits. Doamekpor SK; Lee JW; Hepowit NL; Wu C; Charenton C; Leonard M; Bengtson MH; Rajashankar KR; Sachs MS; Lima CD; Joazeiro CA Proc Natl Acad Sci U S A; 2016 Jul; 113(29):E4151-60. PubMed ID: 27385828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]