These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 25877888)

  • 1. Beyond 3D culture models of cancer.
    Tanner K; Gottesman MM
    Sci Transl Med; 2015 Apr; 7(283):283ps9. PubMed ID: 25877888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Culture Systems and 3D Interfaces Models for Cancer Drugs Testing.
    Fernandes DC; Canadas RF; Reis RL; Oliveira JM
    Adv Exp Med Biol; 2020; 1230():137-159. PubMed ID: 32285369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of spherically structured 3D in vitro tumor models -Advances and prospects.
    Ferreira LP; Gaspar VM; Mano JF
    Acta Biomater; 2018 Jul; 75():11-34. PubMed ID: 29803007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment.
    Yoshii Y; Furukawa T; Waki A; Okuyama H; Inoue M; Itoh M; Zhang MR; Wakizaka H; Sogawa C; Kiyono Y; Yoshii H; Fujibayashi Y; Saga T
    Biomaterials; 2015 May; 51():278-289. PubMed ID: 25771018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preclinical three-dimensional colorectal cancer model: The next generation of in vitro drug efficacy evaluation.
    Sensi F; D'Angelo E; D'Aronco S; Molinaro R; Agostini M
    J Cell Physiol; 2018 Jan; 234(1):181-191. PubMed ID: 30277557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics Enabled Bottom-Up Engineering of 3D Vascularized Tumor for Drug Discovery.
    Agarwal P; Wang H; Sun M; Xu J; Zhao S; Liu Z; Gooch KJ; Zhao Y; Lu X; He X
    ACS Nano; 2017 Jul; 11(7):6691-6702. PubMed ID: 28614653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioengineering 3D environments for cancer models.
    Alemany-Ribes M; Semino CE
    Adv Drug Deliv Rev; 2014 Dec; 79-80():40-9. PubMed ID: 24996134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathophysiologically relevant in vitro tumor models for drug screening.
    Das V; Bruzzese F; Konečný P; Iannelli F; Budillon A; Hajdúch M
    Drug Discov Today; 2015 Jul; 20(7):848-55. PubMed ID: 25908576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional cell culture models for anticancer drug screening: Worth the effort?
    Verjans ET; Doijen J; Luyten W; Landuyt B; Schoofs L
    J Cell Physiol; 2018 Apr; 233(4):2993-3003. PubMed ID: 28618001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling chemical effects on breast cancer: the importance of the microenvironment in vitro.
    Morgan MM; Schuler LA; Ciciliano JC; Johnson BP; Alarid ET; Beebe DJ
    Integr Biol (Camb); 2020 Mar; 12(2):21-33. PubMed ID: 32118264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug screening in 3D in vitro tumor models: overcoming current pitfalls of efficacy read-outs.
    Santo VE; Rebelo SP; Estrada MF; Alves PM; Boghaert E; Brito C
    Biotechnol J; 2017 Jan; 12(1):. PubMed ID: 27966285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microengineered tumor models: insights & opportunities from a physical sciences-oncology perspective.
    DelNero P; Song YH; Fischbach C
    Biomed Microdevices; 2013 Aug; 15(4):583-593. PubMed ID: 23559404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developments in preclinical cancer imaging: innovating the discovery of therapeutics.
    Conway JR; Carragher NO; Timpson P
    Nat Rev Cancer; 2014 May; 14(5):314-28. PubMed ID: 24739578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A strategy for integrating essential three-dimensional microphysiological systems of human organs for realistic anticancer drug screening.
    Heylman C; Sobrino A; Shirure VS; Hughes CC; George SC
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1240-54. PubMed ID: 24740872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-3 Tumor Models in Drug Discovery for Analysis of Immune Cell Infiltration.
    Osswald A; Hedrich V; Sommergruber W
    Methods Mol Biol; 2019; 1953():151-162. PubMed ID: 30912021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering tumors: a tissue engineering perspective in cancer biology.
    Burdett E; Kasper FK; Mikos AG; Ludwig JA
    Tissue Eng Part B Rev; 2010 Jun; 16(3):351-9. PubMed ID: 20092396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-Cancer Drug Validation: the Contribution of Tissue Engineered Models.
    Carvalho MR; Lima D; Reis RL; Oliveira JM; Correlo VM
    Stem Cell Rev Rep; 2017 Jun; 13(3):347-363. PubMed ID: 28233276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combined tissue-engineered/in silico signature tool patient stratification in lung cancer.
    Göttlich C; Kunz M; Zapp C; Nietzer SL; Walles H; Dandekar T; Dandekar G
    Mol Oncol; 2018 Aug; 12(8):1264-1285. PubMed ID: 29797762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered silk fibroin protein 3D matrices for in vitro tumor model.
    Talukdar S; Mandal M; Hutmacher DW; Russell PJ; Soekmadji C; Kundu SC
    Biomaterials; 2011 Mar; 32(8):2149-59. PubMed ID: 21167597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered culture models for studies of tumor-microenvironment interactions.
    Infanger DW; Lynch ME; Fischbach C
    Annu Rev Biomed Eng; 2013; 15():29-53. PubMed ID: 23642249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.