These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 25877888)

  • 21. Production of Uniform 3D Microtumors in Hydrogel Microwell Arrays for Measurement of Viability, Morphology, and Signaling Pathway Activation.
    Singh M; Close DA; Mukundan S; Johnston PA; Sant S
    Assay Drug Dev Technol; 2015 Nov; 13(9):570-83. PubMed ID: 26274587
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro three-dimensional (3D) models in cancer research: an update.
    Kimlin LC; Casagrande G; Virador VM
    Mol Carcinog; 2013 Mar; 52(3):167-82. PubMed ID: 22162252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tissue-engineered human 3D model of bladder cancer for invasion study and drug discovery.
    Ringuette Goulet C; Bernard G; Chabaud S; Couture A; Langlois A; Neveu B; Pouliot F; Bolduc S
    Biomaterials; 2017 Nov; 145():233-241. PubMed ID: 28888113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineered 3D environments to elucidate the effect of environmental parameters on drug response in cancer.
    Håkanson M; Textor M; Charnley M
    Integr Biol (Camb); 2011 Jan; 3(1):31-8. PubMed ID: 21049126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids.
    Kang J; Lee DW; Hwang HJ; Yeon SE; Lee MY; Kuh HJ
    Lab Chip; 2016 Jun; 16(12):2265-76. PubMed ID: 27194205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mimicking Tumors: Toward More Predictive In Vitro Models for Peptide- and Protein-Conjugated Drugs.
    van den Brand D; Massuger LF; Brock R; Verdurmen WP
    Bioconjug Chem; 2017 Mar; 28(3):846-856. PubMed ID: 28122451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microengineered cancer-on-a-chip platforms to study the metastatic microenvironment.
    Portillo-Lara R; Annabi N
    Lab Chip; 2016 Oct; 16(21):4063-4081. PubMed ID: 27605305
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds.
    Bulysheva AA; Bowlin GL; Petrova SP; Yeudall WA
    Biomed Mater; 2013 Oct; 8(5):055009. PubMed ID: 24057893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using high throughput microtissue culture to study the difference in prostate cancer cell behavior and drug response in 2D and 3D co-cultures.
    Mosaad E; Chambers K; Futrega K; Clements J; Doran MR
    BMC Cancer; 2018 May; 18(1):592. PubMed ID: 29793440
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioengineering-inspired three-dimensional culture systems: Organoids to create tumor microenvironment.
    Saglam-Metiner P; Gulce-Iz S; Biray-Avci C
    Gene; 2019 Feb; 686():203-212. PubMed ID: 30481551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering in vitro immune-competent tissue models for testing and evaluation of therapeutics.
    Hammel JH; Zatorski JM; Cook SR; Pompano RR; Munson JM
    Adv Drug Deliv Rev; 2022 Mar; 182():114111. PubMed ID: 35031388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mimicking Metastases Including Tumor Stroma: A New Technique to Generate a Three-Dimensional Colorectal Cancer Model Based on a Biological Decellularized Intestinal Scaffold.
    Nietzer S; Baur F; Sieber S; Hansmann J; Schwarz T; Stoffer C; Häfner H; Gasser M; Waaga-Gasser AM; Walles H; Dandekar G
    Tissue Eng Part C Methods; 2016 Jul; 22(7):621-35. PubMed ID: 27137941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioengineered three-dimensional co-culture of cancer cells and endothelial cells: A model system for dual analysis of tumor growth and angiogenesis.
    Chiew GGY; Wei N; Sultania S; Lim S; Luo KQ
    Biotechnol Bioeng; 2017 Aug; 114(8):1865-1877. PubMed ID: 28369747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D-Dynamic Culture Models of Multiple Myeloma.
    Ferrarini M; Steimberg N; Boniotti J; Berenzi A; Belloni D; Mazzoleni G; Ferrero E
    Methods Mol Biol; 2017; 1612():177-190. PubMed ID: 28634943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineered microenvironments provide new insights into ovarian and prostate cancer progression and drug responses.
    Loessner D; Holzapfel BM; Clements JA
    Adv Drug Deliv Rev; 2014 Dec; 79-80():193-213. PubMed ID: 24969478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Review on biofabrication and applications of heterogeneous tumor models.
    Liu T; Yao R; Pang Y; Sun W
    J Tissue Eng Regen Med; 2019 Nov; 13(11):2101-2120. PubMed ID: 31359625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways.
    DelNero P; Lane M; Verbridge SS; Kwee B; Kermani P; Hempstead B; Stroock A; Fischbach C
    Biomaterials; 2015 Jul; 55():110-8. PubMed ID: 25934456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions.
    Fong EL; Wan X; Yang J; Morgado M; Mikos AG; Harrington DA; Navone NM; Farach-Carson MC
    Biomaterials; 2016 Jan; 77():164-72. PubMed ID: 26599623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening.
    Rijal G; Li W
    Sci Adv; 2017 Sep; 3(9):e1700764. PubMed ID: 28924608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.