These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
586 related articles for article (PubMed ID: 25878139)
1. Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching. Roach T; Miller R; Aigner S; Kranner I Ann Bot; 2015 Sep; 116(4):519-27. PubMed ID: 25878139 [TBL] [Abstract][Full Text] [Related]
2. Non-photochemical quenching and xanthophyll cycle activities in six green algal species suggest mechanistic differences in the process of excess energy dissipation. Quaas T; Berteotti S; Ballottari M; Flieger K; Bassi R; Wilhelm C; Goss R J Plant Physiol; 2015 Jan; 172():92-103. PubMed ID: 25240793 [TBL] [Abstract][Full Text] [Related]
3. The xanthophyll cycle in green algae (chlorophyta): its role in the photosynthetic apparatus. Masojídek J; Kopecký J; Koblízek M; Torzillo G Plant Biol (Stuttg); 2004 May; 6(3):342-9. PubMed ID: 15143443 [TBL] [Abstract][Full Text] [Related]
4. Photoadaptation of two members of the Chlorophyta (Scenedesmus and Chlorella) in laboratory and outdoor cultures: changes in chlorophyll fluorescence quenching and the xanthophyll cycle. Masojídek J; Torzillo G; Koblízek M; Kopecký J; Bernardini P; Sacchi A; Komenda J Planta; 1999 Jul; 209(1):126-35. PubMed ID: 10467039 [TBL] [Abstract][Full Text] [Related]
5. An optimized protocol for the preparation of oxygen-evolving thylakoid membranes from Cyclotella meneghiniana provides a tool for the investigation of diatom plastidic electron transport. Kansy M; Gurowietz A; Wilhelm C; Goss R BMC Plant Biol; 2017 Nov; 17(1):221. PubMed ID: 29178846 [TBL] [Abstract][Full Text] [Related]
6. Diversity in Xanthophyll Cycle Pigments Content and Related Nonphotochemical Quenching (NPQ) Among Microalgae: Implications for Growth Strategy and Ecology. Lacour T; Babin M; Lavaud J J Phycol; 2020 Apr; 56(2):245-263. PubMed ID: 31674660 [TBL] [Abstract][Full Text] [Related]
7. Molecular genetics of xanthophyll-dependent photoprotection in green algae and plants. Baroli I; Niyogi KK Philos Trans R Soc Lond B Biol Sci; 2000 Oct; 355(1402):1385-94. PubMed ID: 11127993 [TBL] [Abstract][Full Text] [Related]
8. The peculiar NPQ regulation in the stramenopile Phaeomonas sp. challenges the xanthophyll cycle dogma. Berne N; Fabryova T; Istaz B; Cardol P; Bailleul B Biochim Biophys Acta Bioenerg; 2018 Jul; 1859(7):491-500. PubMed ID: 29625087 [TBL] [Abstract][Full Text] [Related]
10. A transthylakoid proton gradient and inhibitors induce a non-photochemical fluorescence quenching in unicellular algae Nannochloropsis sp. Cao S; Zhang X; Xu D; Fan X; Mou S; Wang Y; Ye N; Wang W FEBS Lett; 2013 May; 587(9):1310-5. PubMed ID: 23474242 [TBL] [Abstract][Full Text] [Related]
11. The fine-tuning of NPQ in diatoms relies on the regulation of both xanthophyll cycle enzymes. Blommaert L; Chafai L; Bailleul B Sci Rep; 2021 Jun; 11(1):12750. PubMed ID: 34140542 [TBL] [Abstract][Full Text] [Related]
12. Photoprotection in the diatom Thalassiosira pseudonana: role of LI818-like proteins in response to high light stress. Zhu SH; Green BR Biochim Biophys Acta; 2010 Aug; 1797(8):1449-57. PubMed ID: 20388491 [TBL] [Abstract][Full Text] [Related]
13. Molecular events accompanying aggregation-induced energy quenching in fucoxanthin-chlorophyll proteins. Alexandre MTA; Krüger TPJ; Pascal AA; Veremeienko V; Llansola-Portoles MJ; Gundermann K; van Grondelle R; Büchel C; Robert B Biochim Biophys Acta Bioenerg; 2024 Nov; 1865(4):149500. PubMed ID: 39074571 [TBL] [Abstract][Full Text] [Related]
14. The importance of a highly active and DeltapH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. Goss R; Ann Pinto E; Wilhelm C; Richter M J Plant Physiol; 2006 Oct; 163(10):1008-21. PubMed ID: 16971213 [TBL] [Abstract][Full Text] [Related]
15. Nitrogen starvation induces distinct photosynthetic responses and recovery dynamics in diatoms and prasinophytes. Liefer JD; Garg A; Campbell DA; Irwin AJ; Finkel ZV PLoS One; 2018; 13(4):e0195705. PubMed ID: 29641594 [TBL] [Abstract][Full Text] [Related]
16. In diatoms, a transthylakoid proton gradient alone is not sufficient to induce a non-photochemical fluorescence quenching. Lavaud J; Rousseau B; Etienne AL FEBS Lett; 2002 Jul; 523(1-3):163-6. PubMed ID: 12123825 [TBL] [Abstract][Full Text] [Related]
17. Photoprotection in a monophyletic branch of chlorophyte algae is independent of energy-dependent quenching (qE). Christa G; Cruz S; Jahns P; de Vries J; Cartaxana P; Esteves AC; Serôdio J; Gould SB New Phytol; 2017 May; 214(3):1132-1144. PubMed ID: 28152190 [TBL] [Abstract][Full Text] [Related]
18. Photoprotective Role of Neoxanthin in Plants and Algae. Giossi C; Cartaxana P; Cruz S Molecules; 2020 Oct; 25(20):. PubMed ID: 33050573 [TBL] [Abstract][Full Text] [Related]
19. Violaxanthin de-epoxidase is rate-limiting for non-photochemical quenching under subsaturating light or during chilling in Arabidopsis. Chen Z; Gallie DR Plant Physiol Biochem; 2012 Sep; 58():66-82. PubMed ID: 22771437 [TBL] [Abstract][Full Text] [Related]
20. Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Lohr M; Wilhelm C Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8784-9. PubMed ID: 10411953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]