These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

573 related articles for article (PubMed ID: 25878285)

  • 1. Cryptochrome-dependent and -independent circadian entrainment circuits in Drosophila.
    Yoshii T; Hermann-Luibl C; Kistenpfennig C; Schmid B; Tomioka K; Helfrich-Förster C
    J Neurosci; 2015 Apr; 35(15):6131-41. PubMed ID: 25878285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks.
    Ivanchenko M; Stanewsky R; Giebultowicz JM
    J Biol Rhythms; 2001 Jun; 16(3):205-15. PubMed ID: 11407780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Neural Network Underlying Circadian Entrainment and Photoperiodic Adjustment of Sleep and Activity in Drosophila.
    Schlichting M; Menegazzi P; Lelito KR; Yao Z; Buhl E; Dalla Benetta E; Bahle A; Denike J; Hodge JJ; Helfrich-Förster C; Shafer OT
    J Neurosci; 2016 Aug; 36(35):9084-96. PubMed ID: 27581451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Network Interactions Modulate CRY-Dependent Photoresponses in
    Lamba P; Foley LE; Emery P
    J Neurosci; 2018 Jul; 38(27):6161-6171. PubMed ID: 29875268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Tug-of-War between Cryptochrome and the Visual System Allows the Adaptation of Evening Activity to Long Photoperiods in Drosophila melanogaster.
    Kistenpfennig C; Nakayama M; Nihara R; Tomioka K; Helfrich-Förster C; Yoshii T
    J Biol Rhythms; 2018 Feb; 33(1):24-34. PubMed ID: 29179610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila.
    Klarsfeld A; Malpel S; Michard-Vanhée C; Picot M; Chélot E; Rouyer F
    J Neurosci; 2004 Feb; 24(6):1468-77. PubMed ID: 14960620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryptochrome-positive and -negative clock neurons in Drosophila entrain differentially to light and temperature.
    Yoshii T; Hermann C; Helfrich-Förster C
    J Biol Rhythms; 2010 Dec; 25(6):387-98. PubMed ID: 21135155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drosophila CRY Entrains Clocks in Body Tissues to Light and Maintains Passive Membrane Properties in a Non-clock Body Tissue Independent of Light.
    Agrawal P; Houl JH; Gunawardhana KL; Liu T; Zhou J; Zoran MJ; Hardin PE
    Curr Biol; 2017 Aug; 27(16):2431-2441.e3. PubMed ID: 28781048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new role for cryptochrome in a Drosophila circadian oscillator.
    Krishnan B; Levine JD; Lynch MK; Dowse HB; Funes P; Hall JC; Hardin PE; Dryer SE
    Nature; 2001 May; 411(6835):313-7. PubMed ID: 11357134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CRYPTOCHROME photoreceptor gates PDF neuropeptide signaling to set circadian network hierarchy in Drosophila.
    Zhang L; Lear BC; Seluzicki A; Allada R
    Curr Biol; 2009 Dec; 19(23):2050-5. PubMed ID: 19913424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Detailed Re-Examination of the
    Sekiguchi M; Reinhard N; Fukuda A; Katoh S; Rieger D; Helfrich-Förster C; Yoshii T
    J Biol Rhythms; 2024 Oct; 39(5):463-483. PubMed ID: 39082442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptochrome is present in the compound eyes and a subset of Drosophila's clock neurons.
    Yoshii T; Todo T; Wülbeck C; Stanewsky R; Helfrich-Förster C
    J Comp Neurol; 2008 Jun; 508(6):952-66. PubMed ID: 18399544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-shifting the fruit fly clock without cryptochrome.
    Kistenpfennig C; Hirsh J; Yoshii T; Helfrich-Förster C
    J Biol Rhythms; 2012 Apr; 27(2):117-25. PubMed ID: 22476772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entrainment of Drosophila circadian clock to green and yellow light by Rh1, Rh5, Rh6 and CRY.
    Hanai S; Ishida N
    Neuroreport; 2009 May; 20(8):755-8. PubMed ID: 19398933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral dissection of the Drosophila circadian multioscillator system that regulates locomotor rhythms.
    Umezaki Y; Tomioka K
    Zoolog Sci; 2008 Nov; 25(11):1146-55. PubMed ID: 19267626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A role for blind DN2 clock neurons in temperature entrainment of the Drosophila larval brain.
    Picot M; Klarsfeld A; Chélot E; Malpel S; Rouyer F
    J Neurosci; 2009 Jul; 29(26):8312-20. PubMed ID: 19571122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light.
    Saint-Charles A; Michard-Vanhée C; Alejevski F; Chélot E; Boivin A; Rouyer F
    J Comp Neurol; 2016 Oct; 524(14):2828-44. PubMed ID: 26972685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature entrainment of the circadian cuticle deposition rhythm in Drosophila melanogaster.
    Ito C; Goto SG; Tomioka K; Numata H
    J Biol Rhythms; 2011 Feb; 26(1):14-23. PubMed ID: 21252362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of combining a cryptochrome mutation with other visual-system variants on entrainment of locomotor and adult-emergence rhythms in Drosophila.
    Mealey-Ferrara ML; Montalvo AG; Hall JC
    J Neurogenet; 2003; 17(2-3):171-221. PubMed ID: 14668199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drosophila cryb mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light.
    Yoshii T; Funada Y; Ibuki-Ishibashi T; Matsumoto A; Tanimura T; Tomioka K
    J Insect Physiol; 2004 Jun; 50(6):479-88. PubMed ID: 15183277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.