BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25878343)

  • 1. Optimized Protocol for Simple Extraction of High-Quality Genomic DNA from Clostridium difficile for Whole-Genome Sequencing.
    Sim JH; Anikst V; Lohith A; Pourmand N; Banaei N
    J Clin Microbiol; 2015 Jul; 53(7):2329-31. PubMed ID: 25878343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining the cause of recurrent Clostridium difficile infection using whole genome sequencing.
    Sim JH; Truong C; Minot SS; Greenfield N; Budvytiene I; Lohith A; Anikst V; Pourmand N; Banaei N
    Diagn Microbiol Infect Dis; 2017 Jan; 87(1):11-16. PubMed ID: 27771207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction of high-molecular-weight genomic DNA for long-read sequencing of single molecules.
    Mayjonade B; Gouzy J; Donnadieu C; Pouilly N; Marande W; Callot C; Langlade N; Muños S
    Biotechniques; 2016 Oct; 61(4):203-205. PubMed ID: 27712583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From FASTQ to Function: In Silico Methods for Processing Next-Generation Sequencing Data.
    Preston MD; Stabler RA
    Methods Mol Biol; 2016; 1476():23-33. PubMed ID: 27507331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manual curation and reannotation of the genomes of Clostridium difficile 630Δerm and C. difficile 630.
    Dannheim H; Riedel T; Neumann-Schaal M; Bunk B; Schober I; Spröer C; Chibani CM; Gronow S; Liesegang H; Overmann J; Schomburg D
    J Med Microbiol; 2017 Mar; 66(3):286-293. PubMed ID: 28357980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of REPLI-g Multiple Displacement Whole Genome Amplification (WGA) Techniques for Metagenomic Applications.
    Ahsanuddin S; Afshinnekoo E; Gandara J; Hakyemezoğlu M; Bezdan D; Minot S; Greenfield N; Mason CE
    J Biomol Tech; 2017 Apr; 28(1):46-55. PubMed ID: 28344519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomic and phenomic analysis of Clostridium difficile and Clostridium sordellii, two related pathogens with differing host tissue preference.
    Scaria J; Suzuki H; Ptak CP; Chen JW; Zhu Y; Guo XK; Chang YF
    BMC Genomics; 2015 Jun; 16(1):448. PubMed ID: 26059449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro selection, via serial passage, of Clostridium difficile mutants with reduced susceptibility to fidaxomicin or vancomycin.
    Leeds JA; Sachdeva M; Mullin S; Barnes SW; Ruzin A
    J Antimicrob Chemother; 2014 Jan; 69(1):41-4. PubMed ID: 23887866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid extraction of DNA suitable for NGS workflows from bacterial cultures using the PDQeX.
    Stanton JL; Muralidhar A; Rand CJ; Saul DJ
    Biotechniques; 2019 May; 66(5):208-213. PubMed ID: 30813761
    [No Abstract]   [Full Text] [Related]  

  • 10. Genome-wide detection of conservative site-specific recombination in bacteria.
    Sekulovic O; Mathias Garrett E; Bourgeois J; Tamayo R; Shen A; Camilli A
    PLoS Genet; 2018 Apr; 14(4):e1007332. PubMed ID: 29621238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extrachromosomal and integrated genetic elements in Clostridium difficile.
    Amy J; Johanesen P; Lyras D
    Plasmid; 2015 Jul; 80():97-110. PubMed ID: 25929174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Illumina-solexa sequencing protocol for bacterial genomes.
    Hu Z; Cheng L; Wang H
    Methods Mol Biol; 2015; 1231():91-7. PubMed ID: 25343860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pyrosequencing protocol for bacterial genomes.
    Rizzi E
    Methods Mol Biol; 2015; 1231():49-75. PubMed ID: 25343858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Microfluidics Workflow for Sample Preparation for Next-Generation DNA Sequencing.
    Snider A; Nilsson M; Dupal M; Toloue M; Tripathi A
    SLAS Technol; 2019 Apr; 24(2):196-208. PubMed ID: 30142015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Sequencing of Complete Mitochondrial Genomes.
    Briscoe AG; Hopkins KP; Waeschenbach A
    Methods Mol Biol; 2016; 1452():45-64. PubMed ID: 27460369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple method for semi-random DNA amplicon fragmentation using the methylation-dependent restriction enzyme MspJI.
    Shinozuka H; Cogan NO; Shinozuka M; Marshall A; Kay P; Lin YH; Spangenberg GC; Forster JW
    BMC Biotechnol; 2015 Apr; 15():25. PubMed ID: 25887558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole genome sequence and manual annotation of Clostridium autoethanogenum, an industrially relevant bacterium.
    Humphreys CM; McLean S; Schatschneider S; Millat T; Henstra AM; Annan FJ; Breitkopf R; Pander B; Piatek P; Rowe P; Wichlacz AT; Woods C; Norman R; Blom J; Goesman A; Hodgman C; Barrett D; Thomas NR; Winzer K; Minton NP
    BMC Genomics; 2015 Dec; 16():1085. PubMed ID: 26692227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A modified pulsed-field gel electrophoresis (PFGE) protocol for subtyping previously non-PFGE typeable isolates of Clostridium difficile polymerase chain reaction ribotype 001.
    Gal M; Northey G; Brazier JS
    J Hosp Infect; 2005 Nov; 61(3):231-6. PubMed ID: 16002184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New opportunities for improved ribotyping of C. difficile clinical isolates by exploring their genomes.
    Gürtler V; Grando D
    J Microbiol Methods; 2013 Jun; 93(3):257-72. PubMed ID: 23545446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of Acetogenesis Pathway Using Short-Read Sequencing of Clostridium aceticum Genome.
    Lee S; Song Y; Choe D; Cho S; Yu SJ; Cho Y; Kim SC; Cho BK
    J Nanosci Nanotechnol; 2015 May; 15(5):3852-61. PubMed ID: 26505015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.