These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25879019)

  • 1. Rapid prototyping for in vitro knee rig investigations of prosthetized knee biomechanics: comparison with cobalt-chromium alloy implant material.
    Schröder C; Steinbrück A; Müller T; Woiczinski M; Chevalier Y; Weber P; Müller PE; Jansson V
    Biomed Res Int; 2015; 2015():185142. PubMed ID: 25879019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Wear characteristics of different metal-polyethylene beating surfaces. An experimental study of a new model of knee prosthesis].
    Farizon F; Aurelle JL; Rieu J; Bousquet G
    Rev Chir Orthop Reparatrice Appar Mot; 1996; 82(6):522-8. PubMed ID: 9122523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro method for assessing the biomechanics of the patellofemoral joint following total knee arthroplasty.
    Coles LG; Gheduzzi S; Miles AW
    Proc Inst Mech Eng H; 2014 Dec; 228(12):1217-26. PubMed ID: 25515222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of design, materials and kinematics on the in vitro wear of total knee replacements.
    McEwen HM; Barnett PI; Bell CJ; Farrar R; Auger DD; Stone MH; Fisher J
    J Biomech; 2005 Feb; 38(2):357-65. PubMed ID: 15598464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo kinematic evaluation and design considerations related to high flexion in total knee arthroplasty.
    Argenson JN; Scuderi GR; Komistek RD; Scott WN; Kelly MA; Aubaniac JM
    J Biomech; 2005 Feb; 38(2):277-84. PubMed ID: 15598454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tibiofemoral force following total knee arthroplasty: comparison of four prosthesis designs in vitro.
    Nicholls RL; Schirm AC; Jeffcote BO; Kuster MS
    J Orthop Res; 2007 Nov; 25(11):1506-12. PubMed ID: 17568418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Articular surface material effect on metal-backed patellar components. A microscopic evaluation.
    Milliano MT; Whiteside LA
    Clin Orthop Relat Res; 1991 Dec; (273):204-14. PubMed ID: 1959273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical analysis of the effects of material parameters on the lubrication mechanism for knee prosthesis.
    Di Paolo J; Berli ME
    Comput Methods Biomech Biomed Engin; 2006 Apr; 9(2):79-89. PubMed ID: 16880159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A machine for the preliminary investigation of design features influencing the wear behaviour of knee prostheses.
    McGloughlin TM; Murphy DM; Kavanagh AG
    Proc Inst Mech Eng H; 2004; 218(1):51-62. PubMed ID: 14982346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Posterior condyle surface damage on retrieved femoral knee components.
    Burnell CD; Brandt JM; Petrak MJ; Bourne RB
    J Arthroplasty; 2011 Dec; 26(8):1460-7. PubMed ID: 21570806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [In vitro investigation of posterior cruciate ligament strain following total knee arthroplasty].
    Siebel T; Käfer W
    Z Orthop Ihre Grenzgeb; 2006; 144(2):164-71. PubMed ID: 16625446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact mechanics of metal-on-metal hip implants employing a metallic cup with a UHMWPE backing.
    Liu F; Jin ZM; Grigoris P; Hirt F; Rieker C
    Proc Inst Mech Eng H; 2003; 217(3):207-13. PubMed ID: 12807161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tribological behavior of artificial hip joint under the effects of magnetic field in dry and lubricated sliding.
    Zaki M; Aljinaidi A; Hamed M
    Biomed Mater Eng; 2003; 13(3):205-21. PubMed ID: 12883170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematic alignment produces near-normal knee motion but increases contact stress after total knee arthroplasty: A case study on a single implant design.
    Ishikawa M; Kuriyama S; Ito H; Furu M; Nakamura S; Matsuda S
    Knee; 2015 Jun; 22(3):206-12. PubMed ID: 25813759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation of a weight-bearing finite element model for total knee replacement.
    Woiczinski M; Steinbrück A; Weber P; Müller PE; Jansson V; Schröder Ch
    Comput Methods Biomech Biomed Engin; 2016; 19(10):1033-45. PubMed ID: 26618541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Total knee replacement with natural rollback.
    Wachowski MM; Walde TA; Balcarek P; Schüttrumpf JP; Frosch S; Stauffenberg C; Frosch KH; Fiedler C; Fanghänel J; Kubein-Meesenburg D; Nägerl H
    Ann Anat; 2012 Mar; 194(2):195-9. PubMed ID: 21493053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Verification of predicted knee replacement kinematics during simulated gait in the Kansas knee simulator.
    Halloran JP; Clary CW; Maletsky LP; Taylor M; Petrella AJ; Rullkoetter PJ
    J Biomech Eng; 2010 Aug; 132(8):081010. PubMed ID: 20670059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel total knee replacement by rolling articulating surfaces. In vivo functional measurements and tests.
    Nägerl H; Frosch KH; Wachowski MM; Dumont C; Abicht C; Adam P; Kubein-Meesenburg D
    Acta Bioeng Biomech; 2008; 10(1):55-60. PubMed ID: 18634354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobile-bearing insert translational and rotational kinematics in a PCL-retaining total knee arthroplasty.
    Chouteau J; Lerat JL; Testa R; Moyen B; Fessy MH; Banks SA
    Orthop Traumatol Surg Res; 2009 Jun; 95(4):254-9. PubMed ID: 19442597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of biomechanical effect of stem-end design in revision TKA using Digital Korean model.
    Kim YH; Kwon OS; Kim K
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):853-8. PubMed ID: 18321621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.