These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 25879232)

  • 1. Harvesting biomechanical energy or carrying batteries? An evaluation method based on a comparison of metabolic power.
    Schertzer E; Riemer R
    J Neuroeng Rehabil; 2015 Mar; 12():30. PubMed ID: 25879232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions.
    Riemer R; Shapiro A
    J Neuroeng Rehabil; 2011 Apr; 8():22. PubMed ID: 21521509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a biomechanical energy harvester.
    Li Q; Naing V; Donelan JM
    J Neuroeng Rehabil; 2009 Jun; 6():22. PubMed ID: 19549313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Controlled Slip" Energy Harvesting While Walking.
    Xia H; Chen DKY; Zhu X; Shull PB
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):437-443. PubMed ID: 31870988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Powering biomedical devices with body motion.
    Romero E; Warrington RO; Neuman MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3747-50. PubMed ID: 21096868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Body motion for powering biomedical devices.
    Romero E; Warrington RO; Neuman MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2752-5. PubMed ID: 19964048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of subdermal solar energy harvesting for medical device applications based on worldwide meteorological data.
    Tholl MV; Zurbuchen A; Tanner H; Haeberlin A
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33694336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy harvesting for human wearable and implantable bio-sensors.
    Mitcheson PD
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3432-6. PubMed ID: 21097254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical energy harvesting: generating electricity during walking with minimal user effort.
    Donelan JM; Li Q; Naing V; Hoffer JA; Weber DJ; Kuo AD
    Science; 2008 Feb; 319(5864):807-10. PubMed ID: 18258914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confidence in the curve: Establishing instantaneous cost mapping techniques using bilateral ankle exoskeletons.
    Koller JR; Gates DH; Ferris DP; Remy CD
    J Appl Physiol (1985); 2017 Feb; 122(2):242-252. PubMed ID: 27856717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of energy harvesting techniques for wearable medical devices.
    Voss TJ; Subbian V; Beyette FR
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():626-9. PubMed ID: 25570037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human motion energy harvesting using a piezoelectric MFC patch.
    Bassani G; Filippeschi A; Ruffaldi E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5070-3. PubMed ID: 26737431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid dual-functioning electrodes for combined ambient energy harvesting and charge storage: Towards self-powered systems.
    Falk M; Shleev S
    Biosens Bioelectron; 2019 Feb; 126():275-291. PubMed ID: 30445303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal and kinematic changes in gait while carrying an energy harvesting assault pack system.
    Talarico MK; Haynes CA; Douglas JS; Collazo J
    J Biomech; 2018 Jun; 74():143-149. PubMed ID: 29752054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy harvesting from human walking to power biomedical devices using oscillating generation.
    Montoya JA; Mariscal DM; Romero E
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4951-4954. PubMed ID: 28269379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy Harvesting by Subcutaneous Solar Cells: A Long-Term Study on Achievable Energy Output.
    Bereuter L; Williner S; Pianezzi F; Bissig B; Buecheler S; Burger J; Vogel R; Zurbuchen A; Haeberlin A
    Ann Biomed Eng; 2017 May; 45(5):1172-1180. PubMed ID: 28050727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy harvesting for the implantable biomedical devices: issues and challenges.
    Hannan MA; Mutashar S; Samad SA; Hussain A
    Biomed Eng Online; 2014 Jun; 13():79. PubMed ID: 24950601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic Energy Harvesting for Wearable Medical Sensors.
    Gljušćić P; Zelenika S; Blažević D; Kamenar E
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31726683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myoelectric Control for Adaptable Biomechanical Energy Harvesting.
    Selinger JC; Donelan JM
    IEEE Trans Neural Syst Rehabil Eng; 2016 Mar; 24(3):364-73. PubMed ID: 26841402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.