BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25879249)

  • 1. Single-molecule force spectroscopy of membrane proteins from membranes freely spanning across nanoscopic pores.
    Petrosyan R; Bippes CA; Walheim S; Harder D; Fotiadis D; Schimmel T; Alsteens D; Müller DJ
    Nano Lett; 2015 May; 15(5):3624-33. PubMed ID: 25879249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule force spectroscopy from nanodiscs: an assay to quantify folding, stability, and interactions of native membrane proteins.
    Zocher M; Roos C; Wegmann S; Bosshart PD; Dötsch V; Bernhard F; Müller DJ
    ACS Nano; 2012 Jan; 6(1):961-71. PubMed ID: 22196235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Resolution Imaging and Multiparametric Characterization of Native Membranes by Combining Confocal Microscopy and an Atomic Force Microscopy-Based Toolbox.
    Laskowski PR; Pfreundschuh M; Stauffer M; Ucurum Z; Fotiadis D; Müller DJ
    ACS Nano; 2017 Aug; 11(8):8292-8301. PubMed ID: 28745869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic single-molecule force spectroscopy of rhodopsin in native membranes.
    Park PS; Müller DJ
    Methods Mol Biol; 2015; 1271():173-85. PubMed ID: 25697524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AFM-Based Single-Molecule Force Spectroscopy of Proteins.
    Scholl ZN; Marszalek PE
    Methods Mol Biol; 2018; 1814():35-47. PubMed ID: 29956225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force Spectroscopy of Single Protein Molecules Using an Atomic Force Microscope.
    Scholl ZN; Li Q; Josephs E; Apostolidou D; Marszalek PE
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30882788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure and function of cell membranes studied by atomic force microscopy.
    Shi Y; Cai M; Zhou L; Wang H
    Semin Cell Dev Biol; 2018 Jan; 73():31-44. PubMed ID: 28723581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Precision Single-Molecule Characterization of the Folding of an HIV RNA Hairpin by Atomic Force Microscopy.
    Walder R; Van Patten WJ; Ritchie DB; Montange RK; Miller TW; Woodside MT; Perkins TT
    Nano Lett; 2018 Oct; 18(10):6318-6325. PubMed ID: 30234311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy.
    Shan Y; Wang H
    Chem Soc Rev; 2015 Jun; 44(11):3617-38. PubMed ID: 25893228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Molecule Force Spectroscopy of Transmembrane β-Barrel Proteins.
    Thoma J; Sapra KT; Müller DJ
    Annu Rev Anal Chem (Palo Alto Calif); 2018 Jun; 11(1):375-395. PubMed ID: 29894225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical Unfolding and Refolding of Single Membrane Proteins by Atomic Force Microscopy.
    Ritzmann N; Thoma J
    Methods Mol Biol; 2020; 2127():359-372. PubMed ID: 32112333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tip-Enhanced Infrared Difference-Nanospectroscopy of the Proton Pump Activity of Bacteriorhodopsin in Single Purple Membrane Patches.
    Giliberti V; Polito R; Ritter E; Broser M; Hegemann P; Puskar L; Schade U; Zanetti-Polzi L; Daidone I; Corni S; Rusconi F; Biagioni P; Baldassarre L; Ortolani M
    Nano Lett; 2019 May; 19(5):3104-3114. PubMed ID: 30950626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope.
    Edwards DT; Faulk JK; Sanders AW; Bull MS; Walder R; LeBlanc MA; Sousa MC; Perkins TT
    Nano Lett; 2015 Oct; 15(10):7091-8. PubMed ID: 26421945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From valleys to ridges: exploring the dynamic energy landscape of single membrane proteins.
    Janovjak H; Sapra KT; Kedrov A; Müller DJ
    Chemphyschem; 2008 May; 9(7):954-66. PubMed ID: 18348129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacteriorhodopsin folds into the membrane against an external force.
    Kessler M; Gottschalk KE; Janovjak H; Muller DJ; Gaub HE
    J Mol Biol; 2006 Mar; 357(2):644-54. PubMed ID: 16434052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unfolding and identification of membrane proteins in situ.
    Galvanetto N; Ye Z; Marchesi A; Mortal S; Maity S; Laio A; Torre V
    Elife; 2022 Sep; 11():. PubMed ID: 36094473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-dependent bending in and out of purple membranes comprising BR-D85T.
    Baumann RP; Eussner J; Hampp N
    Phys Chem Chem Phys; 2011 Dec; 13(48):21375-82. PubMed ID: 22033510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy of biological membranes.
    Frederix PL; Bosshart PD; Engel A
    Biophys J; 2009 Jan; 96(2):329-38. PubMed ID: 19167286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stretching single polysaccharides and proteins using atomic force microscopy.
    Marszalek PE; Dufrêne YF
    Chem Soc Rev; 2012 May; 41(9):3523-34. PubMed ID: 22331199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing force spectroscopy by modifying commercial cantilevers: Improved stability, precision, and temporal resolution.
    Edwards DT; Perkins TT
    J Struct Biol; 2017 Jan; 197(1):13-25. PubMed ID: 26804584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.