These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 25879962)
1. Development of an Environment-Aware Locomotion Mode Recognition System for Powered Lower Limb Prostheses. Liu M; Wang D; Helen Huang H IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):434-43. PubMed ID: 25879962 [TBL] [Abstract][Full Text] [Related]
2. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. Young AJ; Kuiken TA; Hargrove LJ J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111 [TBL] [Abstract][Full Text] [Related]
3. Noncontact Capacitive Sensing-Based Locomotion Transition Recognition for Amputees With Robotic Transtibial Prostheses. Zheng E; Wang Q IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):161-170. PubMed ID: 26890910 [TBL] [Abstract][Full Text] [Related]
4. Effects of locomotion mode recognition errors on volitional control of powered above-knee prostheses. Zhang F; Liu M; Huang H IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):64-72. PubMed ID: 25486645 [TBL] [Abstract][Full Text] [Related]
5. A Classification Method for User-Independent Intent Recognition for Transfemoral Amputees Using Powered Lower Limb Prostheses. Young AJ; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2016 Feb; 24(2):217-25. PubMed ID: 25794392 [TBL] [Abstract][Full Text] [Related]
6. A noncontact capacitive sensing system for recognizing locomotion modes of transtibial amputees. Zheng E; Wang L; Wei K; Wang Q IEEE Trans Biomed Eng; 2014 Dec; 61(12):2911-20. PubMed ID: 25014949 [TBL] [Abstract][Full Text] [Related]
7. Toward design of an environment-aware adaptive locomotion-mode-recognition system. Du L; Zhang F; Liu M; Huang H IEEE Trans Biomed Eng; 2012 Oct; 59(10):2716-25. PubMed ID: 22996721 [TBL] [Abstract][Full Text] [Related]
8. Detection of critical errors of locomotion mode recognition for volitional control of powered transfemoral prostheses. Fan Zhang ; Ming Liu ; He Huang Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1128-31. PubMed ID: 26736464 [TBL] [Abstract][Full Text] [Related]
9. A Real-Time Gait Event Detection for Lower Limb Prosthesis Control and Evaluation. Maqbool HF; Husman MAB; Awad MI; Abouhossein A; Iqbal N; Dehghani-Sanij AA IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1500-1509. PubMed ID: 28114026 [TBL] [Abstract][Full Text] [Related]
10. Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions. Zhang F; Liu M; Huang H PLoS One; 2015; 10(7):e0133965. PubMed ID: 26197084 [TBL] [Abstract][Full Text] [Related]
11. Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses. Zhang F; Liu M; Huang H Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2768-71. PubMed ID: 23366499 [TBL] [Abstract][Full Text] [Related]
12. Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees. Khademi G; Mohammadi H; Simon D Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634668 [TBL] [Abstract][Full Text] [Related]
13. Intent recognition in a powered lower limb prosthesis using time history information. Young AJ; Simon AM; Fey NP; Hargrove LJ Ann Biomed Eng; 2014 Mar; 42(3):631-41. PubMed ID: 24052324 [TBL] [Abstract][Full Text] [Related]
14. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes. Young AJ; Simon A; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1587-90. PubMed ID: 24110005 [TBL] [Abstract][Full Text] [Related]
15. Across-user adaptation for a powered lower limb prosthesis. Spanias JA; Simon AM; Hargrove LJ IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1580-1583. PubMed ID: 28814045 [TBL] [Abstract][Full Text] [Related]
16. A training method for locomotion mode prediction using powered lower limb prostheses. Young AJ; Simon AM; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):671-7. PubMed ID: 24184753 [TBL] [Abstract][Full Text] [Related]
17. Preliminary design of a terrain recognition system. Zhang F; Fang Z; Liu M; Huang H Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5452-5. PubMed ID: 22255571 [TBL] [Abstract][Full Text] [Related]
18. An automatic and user-driven training method for locomotion mode recognition for artificial leg control. Zhang X; Wang D; Yang Q; Huang H Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6116-9. PubMed ID: 23367324 [TBL] [Abstract][Full Text] [Related]
19. Design of Decision Tree Structure with Improved BPNN Nodes for High-Accuracy Locomotion Mode Recognition Using a Single IMU. Han Y; Liu C; Yan L; Ren L Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33450967 [TBL] [Abstract][Full Text] [Related]
20. IMU-Based Locomotion Mode Identification for Transtibial Prostheses, Orthoses, and Exoskeletons. Gao F; Liu G; Liang F; Liao WH IEEE Trans Neural Syst Rehabil Eng; 2020 Jun; 28(6):1334-1343. PubMed ID: 32286999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]