These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25879962)

  • 21. Locomotion mode identification for lower limbs using neuromuscular and joint kinematic signals.
    Afzal T; White G; Wright AB; Iqbal K
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4071-4. PubMed ID: 25570886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preliminary Design of an Environment Recognition System for Controlling Robotic Lower-Limb Prostheses and Exoskeletons.
    Laschowski B; McNally W; Wong A; McPhee J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():868-873. PubMed ID: 31374739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Delaying Ambulation Mode Transition Decisions Improves Accuracy of a Flexible Control System for Powered Knee-Ankle Prosthesis.
    Simon AM; Ingraham KA; Spanias JA; Young AJ; Finucane SB; Halsne EG; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1164-1171. PubMed ID: 28113980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion.
    Huang H; Zhang F; Hargrove LJ; Dou Z; Rogers DR; Englehart KB
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2867-75. PubMed ID: 21768042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Environmental Features Recognition for Lower Limb Prostheses Toward Predictive Walking.
    Zhang K; Xiong C; Zhang W; Liu H; Lai D; Rong Y; Fu C
    IEEE Trans Neural Syst Rehabil Eng; 2019 Mar; 27(3):465-476. PubMed ID: 30703033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-Time On-Board Recognition of Continuous Locomotion Modes for Amputees With Robotic Transtibial Prostheses.
    Xu D; Feng Y; Mai J; Wang Q
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2015-2025. PubMed ID: 30334741
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A locomotion intent prediction system based on multi-sensor fusion.
    Chen B; Zheng E; Wang Q
    Sensors (Basel); 2014 Jul; 14(7):12349-69. PubMed ID: 25014097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control and Evaluation of a Powered Transfemoral Prosthesis for Stair Ascent.
    Ledoux ED; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):917-924. PubMed ID: 28113346
    [TBL] [Abstract][Full Text] [Related]  

  • 29. User-Independent Intent Recognition for Lower Limb Prostheses Using Depth Sensing.
    Massalin Y; Abdrakhmanova M; Varol HA
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1759-1770. PubMed ID: 29989950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding LSTM Network Behaviour of IMU-Based Locomotion Mode Recognition for Applications in Prostheses and Wearables.
    Sherratt F; Plummer A; Iravani P
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578842
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.
    Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Locomotion mode classification using a wearable capacitive sensing system.
    Chen B; Zheng E; Fan X; Liang T; Wang Q; Wei K; Wang L
    IEEE Trans Neural Syst Rehabil Eng; 2013 Sep; 21(5):744-55. PubMed ID: 23694674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Empirical Evaluation of Force Feedback in Body-Powered Prostheses.
    Brown JD; Kunz TS; Gardner D; Shelley MK; Davis AJ; Gillespie RB
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):215-226. PubMed ID: 27101614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preliminary results for an adaptive pattern recognition system for novel users using a powered lower limb prosthesis.
    Spanias JA; Simon AM; Perreault EJ; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5083-5086. PubMed ID: 28269411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Subvision System for Enhancing the Environmental Adaptability of the Powered Transfemoral Prosthesis.
    Zhang K; Luo J; Xiao W; Zhang W; Liu H; Zhu J; Lu Z; Rong Y; de Silva CW; Fu C
    IEEE Trans Cybern; 2021 Jun; 51(6):3285-3297. PubMed ID: 32203049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Locomotion Mode Recognition With Robotic Transtibial Prosthesis in Inter-Session and Inter-Day Applications.
    Zheng E; Wang Q; Qiao H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1836-1845. PubMed ID: 31403436
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Swing-phase detection of locomotive mode transitions for smooth multi-functional robotic lower-limb prosthesis control.
    Haque MR; Islam MR; Sazonov E; Shen X
    Front Robot AI; 2024; 11():1267072. PubMed ID: 38680622
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Translational Motion Tracking of Leg Joints for Enhanced Prediction of Walking Tasks.
    Stolyarov R; Burnett G; Herr H
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):763-769. PubMed ID: 28650802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-Time Onboard Recognition of Gait Transitions for A Bionic Knee Exoskeleton in Transparent Mode.
    Liu X; Zhou Z; Wang Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3202-3205. PubMed ID: 30441074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.