These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 25879968)

  • 1. Reconfigurable Prototyping Microfluidic Platform for DEP Manipulation and Capacitive Sensing.
    Miled A; Auclair B; Srasra A; Sawan M
    IEEE Trans Biomed Circuits Syst; 2015 Apr; 9(2):155-65. PubMed ID: 25879968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectrophoresis-based integrated Lab-on-Chip for nano and micro-particles manipulation and capacitive detection.
    Miled MA; Massicotte G; Sawan M
    IEEE Trans Biomed Circuits Syst; 2012 Apr; 6(2):120-32. PubMed ID: 23852977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards CMOS Integrated Microfluidics Using Dielectrophoretic Immobilization.
    Matbaechi Ettehad H; Yadav RK; Guha S; Wenger C
    Biosensors (Basel); 2019 Jun; 9(2):. PubMed ID: 31195725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectrophoresis-based cell manipulation using electrodes on a reusable printed circuit board.
    Park K; Suk HJ; Akin D; Bashir R
    Lab Chip; 2009 Aug; 9(15):2224-9. PubMed ID: 19606300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation.
    Chen JZ; Darhuber AA; Troian SM; Wagner S
    Lab Chip; 2004 Oct; 4(5):473-80. PubMed ID: 15472731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a new contactless dielectrophoresis system for active particle manipulation using movable liquid electrodes.
    Gwon HR; Chang ST; Choi CK; Jung JY; Kim JM; Lee SH
    Electrophoresis; 2014 Jul; 35(14):2014-21. PubMed ID: 24737601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crack-Enhanced Microfluidic Stretchable E-Skin Sensor.
    Ho DH; Song R; Sun Q; Park WH; Kim SY; Pang C; Kim DH; Kim SY; Lee J; Cho JH
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44678-44686. PubMed ID: 29205030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip.
    Wiklund M; Günther C; Lemor R; Jäger M; Fuhr G; Hertz HM
    Lab Chip; 2006 Dec; 6(12):1537-44. PubMed ID: 17203158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic device for continuous manipulation of biological cells using dielectrophoresis.
    Das D; Biswas K; Das S
    Med Eng Phys; 2014 Jun; 36(6):726-31. PubMed ID: 24388100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.
    Fan SK; Hsieh TH; Lin DY
    Lab Chip; 2009 May; 9(9):1236-42. PubMed ID: 19370242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic tactile sensors for three-dimensional contact force measurements.
    Nie B; Li R; Brandt JD; Pan T
    Lab Chip; 2014 Nov; 14(22):4344-53. PubMed ID: 25200961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CMOS/microfluidic Lab-on-chip for cells-based diagnostic tools.
    Sawan M; Miled MA; Ghafar-Zadeh E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5334-7. PubMed ID: 21096255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rapid prototyping method for polymer microfluidics with fixed aspect ratio and 3D tapered channels.
    Browne AW; Rust MJ; Jung W; Lee SH; Ahn CH
    Lab Chip; 2009 Oct; 9(20):2941-6. PubMed ID: 19789747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential Ring Oscillator Based Capacitance Sensor for Microfluidic Applications.
    Mohammad K; Thomson DJ
    IEEE Trans Biomed Circuits Syst; 2017 Apr; 11(2):392-399. PubMed ID: 28129183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-voltage DEP microsystem for submicron particle manipulation in artificial cerebrospinal fluid.
    Miled MA; Sawan M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1611-4. PubMed ID: 24110011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A programmable and reconfigurable microfluidic chip.
    Renaudot R; Agache V; Fouillet Y; Laffite G; Bisceglia E; Jalabert L; Kumemura M; Collard D; Fujita H
    Lab Chip; 2013 Dec; 13(23):4517-24. PubMed ID: 24154859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid microparticle patterning by enhanced dielectrophoresis effect on a double-layer electrode substrate.
    Cheng W; Li SZ; Zeng Q; Yu XL; Wang Y; Chan HL; Liu W; Guo SS; Zhao XZ
    Electrophoresis; 2011 Nov; 32(23):3371-7. PubMed ID: 22058049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.