These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 25879971)

  • 1. A Low-Voltage Chopper-Stabilized Amplifier for Fetal ECG Monitoring With a 1.41 Power Efficiency Factor.
    Song S; Rooijakkers M; Harpe P; Rabotti C; Mischi M; van Roermund AH; Cantatore E
    IEEE Trans Biomed Circuits Syst; 2015 Apr; 9(2):237-47. PubMed ID: 25879971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Compact Sub-μW CMOS ECG Amplifier With 57.5-MΩ Z
    Sawigun C; Thanapitak S
    IEEE Trans Biomed Circuits Syst; 2021 Jun; 15(3):549-558. PubMed ID: 34081584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Low-Noise, Low-Power Amplifier With Current-Reused OTA for ECG Recordings.
    Zhang J; Zhang H; Sun Q; Zhang R
    IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):700-708. PubMed ID: 29877832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ECG recording front-end with continuous-time level-crossing sampling.
    Li Y; Mansano AL; Yuan Y; Zhao D; Serdijn WA
    IEEE Trans Biomed Circuits Syst; 2014 Oct; 8(5):626-35. PubMed ID: 25330494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Fully Reconfigurable Low-Noise Biopotential Sensing Amplifier With 1.96 Noise Efficiency Factor.
    Tzu-Yun Wang ; Min-Rui Lai ; Twigg CM; Sheng-Yu Peng
    IEEE Trans Biomed Circuits Syst; 2014 Jun; 8(3):411-22. PubMed ID: 24108476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Low-Power Current-Reuse Analog Front-End for High-Density Neural Recording Implants.
    Rezaei M; Maghsoudloo E; Bories C; De Koninck Y; Gosselin B
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):271-280. PubMed ID: 29570055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 2.64- μW 71-dB SNDR Discrete-Time Signal-Folding Amplifier for Reducing ADC's Resolution Requirement in Wearable ECG Acquisition Systems.
    Ratametha C; Tepwimonpetkun S; Wattanapanitch W
    IEEE Trans Biomed Circuits Syst; 2020 Feb; 14(1):48-64. PubMed ID: 31796416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 4-μW Analog Front End Achieving 2.4 NEF for Long-Term ECG Monitoring.
    Yang W; Jiang H; Yin Y; Wang Z
    IEEE Trans Biomed Circuits Syst; 2021 Aug; 15(4):655-665. PubMed ID: 34043513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Low Noise Amplifier for Neural Spike Recording Interfaces.
    Ruiz-Amaya J; Rodriguez-Perez A; Delgado-Restituto M
    Sensors (Basel); 2015 Sep; 15(10):25313-35. PubMed ID: 26437411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Power Efficient Low-noise and High Swing CMOS Amplifier for Neural Recording Applications.
    Naderi K; Shad E; Molinas M; Heidari A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4298-4301. PubMed ID: 33018946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Autonomous Wireless Sensor Node With Asynchronous ECG Monitoring in 0.18 μ m CMOS.
    Mansano AL; Li Y; Bagga S; Serdijn WA
    IEEE Trans Biomed Circuits Syst; 2016 Jun; 10(3):602-11. PubMed ID: 26812734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of ultra-low power biopotential amplifiers for biosignal acquisition applications.
    Zhang F; Holleman J; Otis BP
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):344-55. PubMed ID: 23853179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Pass Sigma-Delta Modulator With Techniques of Operational Amplifier Sharing and Programmable Feedforward Coefficients for ECG Signal Acquisition.
    Lee SY; Su PH; Huang KL; Hung YW; Chen JY
    IEEE Trans Biomed Circuits Syst; 2021 Jun; 15(3):443-453. PubMed ID: 34018937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 0.5-V multi-channel low-noise readout front-end for portable EEG acquisition.
    Wen-Yen Huang ; Yu-Wei Cheng ; Kea-Tiong Tang
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():837-40. PubMed ID: 26736392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Low-power and Low-noise Multi-purpose Chopper Amplifier with High CMRR and PSRR.
    Shad E; Molinas M; Ytterdal T
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3998-4001. PubMed ID: 33018876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor.
    Majidzadeh V; Schmid A; Leblebici Y
    IEEE Trans Biomed Circuits Syst; 2011 Jun; 5(3):262-71. PubMed ID: 23851477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-power analog integrated circuits for wireless ECG acquisition systems.
    Tsai TH; Hong JH; Wang LH; Lee SY
    IEEE Trans Inf Technol Biomed; 2012 Sep; 16(5):907-17. PubMed ID: 22374371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A low power, low noise Programmable Analog Front End (PAFE) for biopotential measurements.
    Adimulam MK; Divya A; Tejaswi K; Srinivas MB
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3844-3847. PubMed ID: 29060736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a Low Noise Bio-Potential Recorder With High Tolerance to Power-Line Interference Under 0.8 V Power Supply.
    Luo D; Lei J; Zhang M; Wang Z
    IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1421-1430. PubMed ID: 33201829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A digitally assisted, signal folding neural recording amplifier.
    Chen Y; Basu A; Liu L; Zou X; Rajkumar R; Dawe GS; Je M
    IEEE Trans Biomed Circuits Syst; 2014 Aug; 8(4):528-42. PubMed ID: 25073128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.