These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25880306)

  • 21. A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution.
    Hu D; Clarke JA; Eliason CM; Qiu R; Li Q; Shawkey MD; Zhao C; D'Alba L; Jiang J; Xu X
    Nat Commun; 2018 Jan; 9(1):217. PubMed ID: 29335537
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Convergent evolution in dippers (Aves, Cinclidae): The only wing-propelled diving songbirds.
    Smith NA; Koeller KL; Clarke JA; Ksepka DT; Mitchell JS; Nabavizadeh A; Ridgley RC; Witmer LM
    Anat Rec (Hoboken); 2022 Jul; 305(7):1563-1591. PubMed ID: 34813153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Range of motion in the avian wing is strongly associated with flight behavior and body mass.
    Baliga VB; Szabo I; Altshuler DL
    Sci Adv; 2019 Oct; 5(10):eaaw6670. PubMed ID: 31681840
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reassessment of the wing feathers of Archaeopteryx lithographica suggests no robust evidence for the presence of elongated dorsal wing coverts.
    Nudds RL
    PLoS One; 2014; 9(4):e93963. PubMed ID: 24710561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle.
    Nan Y; Karásek M; Lalami ME; Preumont A
    Bioinspir Biomim; 2017 Mar; 12(2):026010. PubMed ID: 28128732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cross sectional geometry of the forelimb skeleton and flight mode in pelecaniform birds.
    Simons EL; Hieronymus TL; O'Connor PM
    J Morphol; 2011 Aug; 272(8):958-71. PubMed ID: 21567447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flight, symmetry and barb angle evolution in the feathers of birds and other dinosaurs.
    Wang X; Tang HK; Clarke JA
    Biol Lett; 2019 Dec; 15(12):20190622. PubMed ID: 31795849
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size scaling and stiffness of avian primary feathers: implications for the flight of Mesozoic birds.
    Wang X; Nudds RL; Palmer C; Dyke GJ
    J Evol Biol; 2012 Mar; 25(3):547-55. PubMed ID: 22260434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone laminarity in the avian forelimb skeleton and its relationship to flight mode: testing functional interpretations.
    Simons EL; O'connor PM
    Anat Rec (Hoboken); 2012 Mar; 295(3):386-96. PubMed ID: 22241723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolution: taking wing with weak feathers.
    Xu X
    Curr Biol; 2012 Dec; 22(23):R992-4. PubMed ID: 23218012
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Feather roughness reduces flow separation during low Reynolds number glides of swifts.
    van Bokhorst E; de Kat R; Elsinga GE; Lentink D
    J Exp Biol; 2015 Oct; 218(Pt 20):3179-91. PubMed ID: 26347563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A primitive enantiornithine bird and the origin of feathers.
    Zhang F; Zhou Z
    Science; 2000 Dec; 290(5498):1955-9. PubMed ID: 11110660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential for Powered Flight Neared by Most Close Avialan Relatives, but Few Crossed Its Thresholds.
    Pei R; Pittman M; Goloboff PA; Dececchi TA; Habib MB; Kaye TG; Larsson HCE; Norell MA; Brusatte SL; Xu X
    Curr Biol; 2020 Oct; 30(20):4033-4046.e8. PubMed ID: 32763170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biplane wing planform and flight performance of the feathered dinosaur Microraptor gui.
    Chatterjee S; Templin RJ
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1576-80. PubMed ID: 17242354
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.
    Kruyt JW; van Heijst GF; Altshuler DL; Lentink D
    J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25788539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wing morphology, flight type and migration distance predict accumulated fuel load in birds.
    Vincze O; Vágási CI; Pap PL; Palmer C; Møller AP
    J Exp Biol; 2019 Jan; 222(Pt 1):. PubMed ID: 30446537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight.
    Feo TJ; Field DJ; Prum RO
    Proc Biol Sci; 2015 Mar; 282(1803):20142864. PubMed ID: 25673687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The asymmetry of the carpal joint and the evolution of wing folding in maniraptoran theropod dinosaurs.
    Sullivan C; Hone DW; Xu X; Zhang F
    Proc Biol Sci; 2010 Jul; 277(1690):2027-33. PubMed ID: 20200032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.