BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25880335)

  • 1. Temperature dependence of the reconstruction of zigzag edges in graphene.
    He K; Robertson AW; Fan Y; Allen CS; Lin YC; Suenaga K; Kirkland AI; Warner JH
    ACS Nano; 2015 May; 9(5):4786-95. PubMed ID: 25880335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene edges and beyond: temperature-driven structures and electromagnetic properties.
    Hyun C; Yun J; Cho WJ; Myung CW; Park J; Lee G; Lee Z; Kim K; Kim KS
    ACS Nano; 2015 May; 9(5):4669-74. PubMed ID: 26006783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elongated Silicon-Carbon Bonds at Graphene Edges.
    Chen Q; Robertson AW; He K; Gong C; Yoon E; Kirkland AI; Lee GD; Warner JH
    ACS Nano; 2016 Jan; 10(1):142-9. PubMed ID: 26619146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extended Klein edges in graphene.
    He K; Robertson AW; Lee S; Yoon E; Lee GD; Warner JH
    ACS Nano; 2014 Dec; 8(12):12272-9. PubMed ID: 25533172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal dynamics of graphene edges investigated by polarized Raman spectroscopy.
    Xu YN; Zhan D; Liu L; Suo H; Ni ZH; Nguyen TT; Zhao C; Shen ZX
    ACS Nano; 2011 Jan; 5(1):147-52. PubMed ID: 21171568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomically perfect torn graphene edges and their reversible reconstruction.
    Kim K; Coh S; Kisielowski C; Crommie MF; Louie SG; Cohen ML; Zettl A
    Nat Commun; 2013; 4():2723. PubMed ID: 24177166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons.
    Jia X; Hofmann M; Meunier V; Sumpter BG; Campos-Delgado J; Romo-Herrera JM; Son H; Hsieh YP; Reina A; Kong J; Terrones M; Dresselhaus MS
    Science; 2009 Mar; 323(5922):1701-5. PubMed ID: 19325109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Klein Edge Doublets from Graphene Monolayers.
    Kim JS; Warner JH; Robertson AW; Kirkland AI
    ACS Nano; 2015 Sep; 9(9):8916-22. PubMed ID: 26284501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies.
    Kim J; Lee N; Min YH; Noh S; Kim NK; Jung S; Joo M; Yamada Y
    ACS Omega; 2018 Dec; 3(12):17789-17796. PubMed ID: 31458375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preferential functionalization on zigzag graphene nanoribbons: first-principles calculations.
    Lee H
    J Phys Condens Matter; 2010 Sep; 22(35):352205. PubMed ID: 21403278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomically Flat Zigzag Edges in Monolayer MoS
    Chen Q; Li H; Xu W; Wang S; Sawada H; Allen CS; Kirkland AI; Grossman JC; Warner JH
    Nano Lett; 2017 Sep; 17(9):5502-5507. PubMed ID: 28799770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic Etching of Hexagonal Boron Nitride and Graphene: Question of Edge Terminations.
    Stehle YY; Sang X; Unocic RR; Voylov D; Jackson RK; Smirnov S; Vlassiouk I
    Nano Lett; 2017 Dec; 17(12):7306-7314. PubMed ID: 29136386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic and Quantum Transport Properties of Atomically Identified Si Point Defects in Graphene.
    Lopez-Bezanilla A; Zhou W; Idrobo JC
    J Phys Chem Lett; 2014 May; 5(10):1711-8. PubMed ID: 26270371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons.
    Magda GZ; Jin X; Hagymási I; Vancsó P; Osváth Z; Nemes-Incze P; Hwang C; Biró LP; Tapasztó L
    Nature; 2014 Oct; 514(7524):608-11. PubMed ID: 25355361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene at the edge: stability and dynamics.
    Girit CO; Meyer JC; Erni R; Rossell MD; Kisielowski C; Yang L; Park CH; Crommie MF; Cohen ML; Louie SG; Zettl A
    Science; 2009 Mar; 323(5922):1705-8. PubMed ID: 19325110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Edge reconstruction-mediated graphene fracture.
    Zhang Z; Kutana A; Yakobson BI
    Nanoscale; 2015 Feb; 7(6):2716-22. PubMed ID: 25583600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-passivating edge reconstructions of graphene.
    Koskinen P; Malola S; Häkkinen H
    Phys Rev Lett; 2008 Sep; 101(11):115502. PubMed ID: 18851294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shaping and Edge Engineering of Few-Layered Freestanding Graphene Sheets in a Transmission Electron Microscope.
    Zhao L; Luo G; Cheng Y; Li X; Zhou S; Luo C; Wang J; Liao HG; Golberg D; Wang MS
    Nano Lett; 2020 Apr; 20(4):2279-2287. PubMed ID: 31846340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition.
    Ma T; Ren W; Zhang X; Liu Z; Gao Y; Yin LC; Ma XL; Ding F; Cheng HM
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20386-91. PubMed ID: 24297886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential oxidation-induced etching of zigzag edges in nanographene.
    Takashiro J; Kudo Y; Hao SJ; Takai K; Futaba DN; Enoki T; Kiguchi M
    Phys Chem Chem Phys; 2014 Oct; 16(39):21363-71. PubMed ID: 25179299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.