These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25880365)

  • 1. Dynamic flux balancing elucidates NAD(P)H production as limiting response to furfural inhibition in Saccharomyces cerevisiae.
    Pornkamol U; Franzen CJ
    Biotechnol J; 2015 Aug; 10(8):1248-58. PubMed ID: 25880365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flux control-based design of furfural-resistance strains of Saccharomyces cerevisiae for lignocellulosic biorefinery.
    Unrean P
    Bioprocess Biosyst Eng; 2017 Apr; 40(4):611-623. PubMed ID: 28025701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.
    Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic model-based analysis of furfural and HMF detoxification by pure and mixed batch cultures of S. cerevisiae and S. stipitis.
    Hanly TJ; Henson MA
    Biotechnol Bioeng; 2014 Feb; 111(2):272-84. PubMed ID: 23983023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae.
    Wahlbom CF; Hahn-Hägerdal B
    Biotechnol Bioeng; 2002 Apr; 78(2):172-8. PubMed ID: 11870608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigate the Metabolic Reprogramming of Saccharomyces cerevisiae for Enhanced Resistance to Mixed Fermentation Inhibitors via 13C Metabolic Flux Analysis.
    Guo W; Chen Y; Wei N; Feng X
    PLoS One; 2016; 11(8):e0161448. PubMed ID: 27532329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases.
    Heer D; Heine D; Sauer U
    Appl Environ Microbiol; 2009 Dec; 75(24):7631-8. PubMed ID: 19854918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass.
    Pereira FB; Romaní A; Ruiz HA; Teixeira JA; Domingues L
    Bioresour Technol; 2014 Jun; 161():192-9. PubMed ID: 24704884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pervaporation of ethanol from lignocellulosic fermentation broth.
    Gaykawad SS; Zha Y; Punt PJ; van Groenestijn JW; van der Wielen LA; Straathof AJ
    Bioresour Technol; 2013 Feb; 129():469-76. PubMed ID: 23266848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae.
    Almeida JR; Röder A; Modig T; Laadan B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):939-45. PubMed ID: 18330568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii during butanol fermentation.
    Ujor V; Agu CV; Gopalan V; Ezeji TC
    Appl Microbiol Biotechnol; 2014; 98(14):6511-21. PubMed ID: 24839212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae.
    Hjersted JL; Henson MA
    IET Syst Biol; 2009 May; 3(3):167-79. PubMed ID: 19449977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.
    Ishii J; Yoshimura K; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture.
    Palmqvist E; Almeida JS; Hahn-Hägerdal B
    Biotechnol Bioeng; 1999 Feb; 62(4):447-54. PubMed ID: 9921153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of furfural on anaerobic continuous cultivation of Saccharomyces cerevisiae.
    Horváth IS; Taherzadeh MJ; Niklasson C; Lidén G
    Biotechnol Bioeng; 2001 Dec; 75(5):540-9. PubMed ID: 11745129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran.
    Liu ZL; Slininger PJ; Dien BS; Berhow MA; Kurtzman CP; Gorsich SW
    J Ind Microbiol Biotechnol; 2004 Sep; 31(8):345-52. PubMed ID: 15338422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability of the response of Saccharomyces cerevisiae strains to lignocellulose hydrolysate.
    Modig T; Almeida JR; Gorwa-Grauslund MF; Lidén G
    Biotechnol Bioeng; 2008 Jun; 100(3):423-9. PubMed ID: 18438882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural.
    Fujitomi K; Sanda T; Hasunuma T; Kondo A
    Bioresour Technol; 2012 May; 111():161-6. PubMed ID: 22357292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae.
    Nguyen TT; Kitajima S; Izawa S
    J Biosci Bioeng; 2014 Sep; 118(3):263-9. PubMed ID: 24725964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.