BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25880455)

  • 1. Transformation of triclosan to 2,8-dichlorodibenzo-p-dioxin by iron and manganese oxides under near dry conditions.
    Ding J; Su M; Wu C; Lin K
    Chemosphere; 2015 Aug; 133():41-6. PubMed ID: 25880455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of 1,3,8-tribromodibenzo-p-dioxin and 2,4,6,8-tetrabromodibenzofuran in the oxidation of synthetic hydroxylated polybrominated diphenyl ethers by iron and manganese oxides under dry conditions.
    Ding J; Long G; Luo Y; Sun R; Chen M; Li Y; Zhou Y; Xu X; Zhao W
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30160-30169. PubMed ID: 30151788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative transformation of triclosan and chlorophene by manganese oxides.
    Zhang H; Huang CH
    Environ Sci Technol; 2003 Jun; 37(11):2421-30. PubMed ID: 12831027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of dissolved organic matter on phototransformation rates and dioxin products of triclosan and 2'-HO-BDE-28 in estuarine water.
    Zhang YN; Xie Q; Sun G; Yang K; Song S; Chen J; Zhou C; Li Y
    Environ Sci Process Impacts; 2016 Sep; 18(9):1177-84. PubMed ID: 27383795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confirmation of the formation of dichlorodibenzo-p-dioxin in the photodegradation of triclosan by photo-SPME.
    Lores M; Llompart M; Sanchez-Prado L; Garcia-Jares C; Cela R
    Anal Bioanal Chem; 2005 Mar; 381(6):1294-8. PubMed ID: 15702305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products.
    Latch DE; Packer JL; Stender BL; VanOverbeke J; Arnold WA; McNeill K
    Environ Toxicol Chem; 2005 Mar; 24(3):517-25. PubMed ID: 15779749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced triclosan and nutrient removal performance in vertical up-flow constructed wetlands with manganese oxides.
    Xie H; Yang Y; Liu J; Kang Y; Zhang J; Hu Z; Liang S
    Water Res; 2018 Oct; 143():457-466. PubMed ID: 29986254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aquatic photochemistry of chlorinated triclosan derivatives: potential source of polychlorodibenzo-p-dioxins.
    Buth JM; Grandbois M; Vikesland PJ; McNeill K; Arnold WA
    Environ Toxicol Chem; 2009 Dec; 28(12):2555-63. PubMed ID: 19908930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photolytic degradation of triclosan in freshwater and seawater.
    Aranami K; Readman JW
    Chemosphere; 2007 Jan; 66(6):1052-6. PubMed ID: 16930676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal Conversion of Triclosan-The Role of Activated Carbon as Sorbent and Reactant.
    Weiner B; Sühnholz S; Kopinke FD
    Environ Sci Technol; 2017 Feb; 51(3):1649-1653. PubMed ID: 28005344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GC/MS analysis of triclosan and its degradation by-products in wastewater and sludge samples from different treatments.
    Tohidi F; Cai Z
    Environ Sci Pollut Res Int; 2015 Aug; 22(15):11387-400. PubMed ID: 25810102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dioxin photoproducts of triclosan and its chlorinated derivatives in sediment cores.
    Buth JM; Steen PO; Sueper C; Blumentritt D; Vikesland PJ; Arnold WA; McNeill K
    Environ Sci Technol; 2010 Jun; 44(12):4545-51. PubMed ID: 20476764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of 2,7-dichlorodibenzo-p-dioxin by Fe(3+)-H(2)O(2) mixed reagent.
    Mino Y; Moriyama Y; Nakatake Y
    Chemosphere; 2004 Nov; 57(5):365-72. PubMed ID: 15331263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of triclosan by permanganate (Mn(VII)): importance of ligands and in situ formed manganese oxides.
    Jiang J; Pang SY; Ma J
    Environ Sci Technol; 2009 Nov; 43(21):8326-31. PubMed ID: 19924964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis of Triclosan and Its Chlorinated Derivatives.
    Narimani M; da Silva G
    J Phys Chem A; 2020 Oct; 124(39):8050-8056. PubMed ID: 32875798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation of Triclosan by Fe(III)-saturated montmorillonite.
    Liyanapatirana C; Gwaltney SR; Xia K
    Environ Sci Technol; 2010 Jan; 44(2):668-74. PubMed ID: 20000674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemiluminescence evidence supporting the selective role of ligands in the permanganate oxidation of micropollutants.
    Roderick MS; Adcock JL; Terry JM; Smith ZM; Parry S; Linton SM; Thornton MT; Barrow CJ; Francis PS
    J Phys Chem A; 2013 Oct; 117(40):10286-93. PubMed ID: 24050380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Iron(II) on Arsenic Sequestration by δ-MnO2: Desorption Studies Using Stirred-Flow Experiments and X-Ray Absorption Fine-Structure Spectroscopy.
    Wu Y; Li W; Sparks DL
    Environ Sci Technol; 2015 Nov; 49(22):13360-8. PubMed ID: 26477604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laccase- and electrochemically mediated conversion of triclosan: Metabolite formation and influence on antibacterial activity.
    Jahangiri E; Seiwert B; Reemtsma T; Schlosser D
    Chemosphere; 2017 Feb; 168():549-558. PubMed ID: 27842719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an X-ray absorption spectroscopy investigation.
    Zhang G; Liu F; Liu H; Qu J; Liu R
    Environ Sci Technol; 2014 Sep; 48(17):10316-22. PubMed ID: 25093452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.