These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 25880543)

  • 1. Aro: a machine learning approach to identifying single molecules and estimating classification error in fluorescence microscopy images.
    Wu AC; Rifkin SA
    BMC Bioinformatics; 2015 Mar; 16():102. PubMed ID: 25880543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying fluorescently labeled single molecules in image stacks using machine learning.
    Rifkin SA
    Methods Mol Biol; 2011; 772():329-48. PubMed ID: 22065448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative gene expression analysis in Caenorhabditis elegans using single molecule RNA FISH.
    Bolková J; Lanctôt C
    Methods; 2016 Apr; 98():42-49. PubMed ID: 26564238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light sheet microscopy in cell biology.
    Tomer R; Khairy K; Keller PJ
    Methods Mol Biol; 2013; 931():123-37. PubMed ID: 23027001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated classification of multicolored rolling circle products in dual-channel wide-field fluorescence microscopy.
    Gavrilovic M; Weibrecht I; Conze T; Söderberg O; Wählby C
    Cytometry A; 2011 Jul; 79(7):518-27. PubMed ID: 21671402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The lineaging of fluorescently-labeled Caenorhabditis elegans embryos with StarryNite and AceTree.
    Murray JI; Bao Z; Boyle TJ; Waterston RH
    Nat Protoc; 2006; 1(3):1468-76. PubMed ID: 17406437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging techniques: picture the world with kaleidoscope dyes.
    Paddock SW
    Curr Biol; 1997 Mar; 7(3):R182-5. PubMed ID: 9162485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of in vivo single cell behavior by high throughput, human-in-the-loop segmentation of three-dimensional images.
    Chiang M; Hallman S; Cinquin A; de Mochel NR; Paz A; Kawauchi S; Calof AL; Cho KW; Fowlkes CC; Cinquin O
    BMC Bioinformatics; 2015 Nov; 16():397. PubMed ID: 26607933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of nuclei in 4D Nomarski DIC microscope images of early Caenorhabditis elegans embryos using local image entropy and object tracking.
    Hamahashi S; Onami S; Kitano H
    BMC Bioinformatics; 2005 May; 6():125. PubMed ID: 15910690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging C. elegans embryos using an epifluorescent microscope and open source software.
    Verbrugghe KJ; Chan RC
    J Vis Exp; 2011 Mar; (49):. PubMed ID: 21490567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence Image Analyzer - FLIMA: software for quantitative analysis of fluorescence in situ hybridization.
    Silva HC; Martins-Júnior MM; Ribeiro LB; Matoso DA
    Genet Mol Res; 2017 Mar; 16(1):. PubMed ID: 28363012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using machine learning to speed up manual image annotation: application to a 3D imaging protocol for measuring single cell gene expression in the developing C. elegans embryo.
    Aydin Z; Murray JI; Waterston RH; Noble WS
    BMC Bioinformatics; 2010 Feb; 11():84. PubMed ID: 20146825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Image Analysis of Single-Molecule mRNA Dynamics in Living Cells.
    Rino J; de Jesus AC; Carmo-Fonseca M
    Methods Mol Biol; 2017; 1563():229-242. PubMed ID: 28324612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmentation and classification of two-channel C. elegans nucleus-labeled fluorescence images.
    Zhao M; An J; Li H; Zhang J; Li ST; Li XM; Dong MQ; Mao H; Tao L
    BMC Bioinformatics; 2017 Sep; 18(1):412. PubMed ID: 28915791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishment of a morphological atlas of the Caenorhabditis elegans embryo using deep-learning-based 4D segmentation.
    Cao J; Guan G; Ho VWS; Wong MK; Chan LY; Tang C; Zhao Z; Yan H
    Nat Commun; 2020 Dec; 11(1):6254. PubMed ID: 33288755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of single fluorescent labels using spectroscopic microscopy.
    Heider EC; Barhoum M; Peterson EM; Schaefer J; Harris JM
    Appl Spectrosc; 2010 Jan; 64(1):37-45. PubMed ID: 20132596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring microtubule growth and gliding in Caenorhabditis elegans embryos.
    Tegha-Dunghu J; Gusnowski EM; Srayko M
    Methods Mol Biol; 2014; 1136():103-16. PubMed ID: 24633796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seeing Is Believing: Quantifying Is Convincing: Computational Image Analysis in Biology.
    Sbalzarini IF
    Adv Anat Embryol Cell Biol; 2016; 219():1-39. PubMed ID: 27207361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational quantification of fluorescent leukocyte numbers in zebrafish embryos.
    Ellett F; Lieschke GJ
    Methods Enzymol; 2012; 506():425-35. PubMed ID: 22341237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantization of widefield fluorescence images using structured illumination and image analysis software.
    Barlow AL; Guerin CJ
    Microsc Res Tech; 2007 Jan; 70(1):76-84. PubMed ID: 17131356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.