These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 25880614)
41. Enhancing siRNA-based cancer therapy using a new pH-responsive activatable cell-penetrating peptide-modified liposomal system. Xiang B; Jia XL; Qi JL; Yang LP; Sun WH; Yan X; Yang SK; Cao DY; Du Q; Qi XR Int J Nanomedicine; 2017; 12():2385-2405. PubMed ID: 28405163 [TBL] [Abstract][Full Text] [Related]
42. Disaccharide-modified liposomes and their in vitro intracellular uptake. Song CK; Jung SH; Kim DD; Jeong KS; Shin BC; Seong H Int J Pharm; 2009 Oct; 380(1-2):161-9. PubMed ID: 19635539 [TBL] [Abstract][Full Text] [Related]
43. Dual-ligand modification of PEGylated liposomes shows better cell selectivity and efficient gene delivery. Kibria G; Hatakeyama H; Ohga N; Hida K; Harashima H J Control Release; 2011 Jul; 153(2):141-8. PubMed ID: 21447361 [TBL] [Abstract][Full Text] [Related]
45. Core-shell type lipid/rPAA-Chol polymer hybrid nanoparticles for in vivo siRNA delivery. Gao LY; Liu XY; Chen CJ; Wang JC; Feng Q; Yu MZ; Ma XF; Pei XW; Niu YJ; Qiu C; Pang WH; Zhang Q Biomaterials; 2014 Feb; 35(6):2066-78. PubMed ID: 24315577 [TBL] [Abstract][Full Text] [Related]
46. iRGD-conjugated DSPE-PEG2000 nanomicelles for targeted delivery of salinomycin for treatment of both liver cancer cells and cancer stem cells. Mao X; Liu J; Gong Z; Zhang H; Lu Y; Zou H; Yu Y; Chen Y; Sun Z; Li W; Li B; Gao J; Zhong Y Nanomedicine (Lond); 2015; 10(17):2677-95. PubMed ID: 26355733 [TBL] [Abstract][Full Text] [Related]
47. Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide: Analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells. Hu J; Wang J; Wang G; Yao Z; Dang X Int J Mol Med; 2016 Mar; 37(3):690-702. PubMed ID: 26782731 [TBL] [Abstract][Full Text] [Related]
48. Size-controlled, dual-ligand modified liposomes that target the tumor vasculature show promise for use in drug-resistant cancer therapy. Takara K; Hatakeyama H; Kibria G; Ohga N; Hida K; Harashima H J Control Release; 2012 Aug; 162(1):225-32. PubMed ID: 22728515 [TBL] [Abstract][Full Text] [Related]
49. Design of a dual-ligand system using a specific ligand and cell penetrating peptide, resulting in a synergistic effect on selectivity and cellular uptake. Takara K; Hatakeyama H; Ohga N; Hida K; Harashima H Int J Pharm; 2010 Aug; 396(1-2):143-8. PubMed ID: 20457236 [TBL] [Abstract][Full Text] [Related]
50. Microfluidic synthesis of multifunctional liposomes for tumour targeting. Ran R; Middelberg APJ; Zhao CX Colloids Surf B Biointerfaces; 2016 Dec; 148():402-410. PubMed ID: 27639490 [TBL] [Abstract][Full Text] [Related]
51. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Jiang L; Li L; He X; Yi Q; He B; Cao J; Pan W; Gu Z Biomaterials; 2015 Jun; 52():126-39. PubMed ID: 25818419 [TBL] [Abstract][Full Text] [Related]
52. Targeted delivery of antisense oligodeoxynucleotide and small interference RNA into lung cancer cells. Li SD; Huang L Mol Pharm; 2006; 3(5):579-88. PubMed ID: 17009857 [TBL] [Abstract][Full Text] [Related]
53. Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Farkhani SM; Valizadeh A; Karami H; Mohammadi S; Sohrabi N; Badrzadeh F Peptides; 2014 Jul; 57():78-94. PubMed ID: 24795041 [TBL] [Abstract][Full Text] [Related]
54. Lipid composition has significant effect on targeted drug delivery properties of NGR-modified liposomes. Chen J; Lin A; Peng P; Wang Y; Gu W; Liu Y Drug Deliv; 2016 May; 23(4):1426-33. PubMed ID: 26373704 [TBL] [Abstract][Full Text] [Related]
55. A comprehensive mathematical model of drug release kinetics from nano-liposomes, derived from optimization studies of cationic PEGylated liposomal doxorubicin formulations for drug-gene delivery. Haghiralsadat F; Amoabediny G; Helder MN; Naderinezhad S; Sheikhha MH; Forouzanfar T; Zandieh-Doulabi B Artif Cells Nanomed Biotechnol; 2018 Feb; 46(1):169-177. PubMed ID: 28376641 [TBL] [Abstract][Full Text] [Related]
56. Gold nanostar-polymer hybrids for siRNA delivery: Polymer design towards colloidal stability and in vitro studies on breast cancer cells. Sardo C; Bassi B; Craparo EF; Scialabba C; Cabrini E; Dacarro G; D'Agostino A; Taglietti A; Giammona G; Pallavicini P; Cavallaro G Int J Pharm; 2017 Mar; 519(1-2):113-124. PubMed ID: 28093325 [TBL] [Abstract][Full Text] [Related]
57. Systemic and tumor-targeted delivery of siRNA by cyclic NGR and isoDGR motif-containing peptides. Huang Y; Cheng Q; Jin X; Ji JL; Guo S; Zheng S; Wang X; Cao H; Gao S; Liang XJ; Du Q; Liang Z Biomater Sci; 2016 Mar; 4(3):494-510. PubMed ID: 26783563 [TBL] [Abstract][Full Text] [Related]
58. Angiopep-2 and activatable cell penetrating peptide dual modified nanoparticles for enhanced tumor targeting and penetrating. Mei L; Zhang Q; Yang Y; He Q; Gao H Int J Pharm; 2014 Oct; 474(1-2):95-102. PubMed ID: 25138251 [TBL] [Abstract][Full Text] [Related]
59. siRNA delivery: from lipids to cell-penetrating peptides and their mimics. Gooding M; Browne LP; Quinteiro FM; Selwood DL Chem Biol Drug Des; 2012 Dec; 80(6):787-809. PubMed ID: 22974319 [TBL] [Abstract][Full Text] [Related]
60. A new amphipathic, amino-acid-pairing (AAP) peptide as siRNA delivery carrier: physicochemical characterization and in vitro uptake. Jafari M; Xu W; Naahidi S; Chen B; Chen P J Phys Chem B; 2012 Nov; 116(44):13183-91. PubMed ID: 23077976 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]