These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 25880709)
1. Application of magnetic rods for fixation in orthopedic treatments. Shelyakova T; Russo A; Visani A; Dediu VA; Marcacci M Comput Biol Med; 2015 Jun; 61():101-6. PubMed ID: 25880709 [TBL] [Abstract][Full Text] [Related]
2. A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects. Russo A; Shelyakova T; Casino D; Lopomo N; Strazzari A; Ortolani A; Visani A; Dediu V; Marcacci M Med Eng Phys; 2012 Nov; 34(9):1287-93. PubMed ID: 22381395 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical Analysis of Unilateral External Skeletal Fixators Combined with IM-Pin and Without IM-Pin Using Finite-Element Method. Radke H; Aron DN; Applewhite A; Zhang G Vet Surg; 2006 Jan; 35(1):15-23. PubMed ID: 16409404 [TBL] [Abstract][Full Text] [Related]
4. Would CoCr rods provide better correctional forces than stainless steel or titanium for rigid scoliosis curves? Serhan H; Mhatre D; Newton P; Giorgio P; Sturm P J Spinal Disord Tech; 2013 Apr; 26(2):E70-4. PubMed ID: 22832558 [TBL] [Abstract][Full Text] [Related]
5. [Theoretical analysis and numerical simulation of effect of steel plate positions on steel plate rigidity in internal fixation of bone surgery]. Chen B; Gu Y; Lü D; Lü X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):425-9. PubMed ID: 14565005 [TBL] [Abstract][Full Text] [Related]
6. Factors which may increase stresses at the pin-bone interface in external fixation: a finite element analysis study. Oni OO; Capper M; Soutis C Afr J Med Med Sci; 1999; 28(1-2):13-5. PubMed ID: 12953980 [TBL] [Abstract][Full Text] [Related]
7. Finite element comparison of retrograde intramedullary nailing and locking plate fixation with/without an intramedullary allograft for distal femur fracture following total knee arthroplasty. Chen SH; Chiang MC; Hung CH; Lin SC; Chang HW Knee; 2014 Jan; 21(1):224-31. PubMed ID: 23582376 [TBL] [Abstract][Full Text] [Related]
8. Biomechanical analysis of the less invasive stabilization system for mechanically unstable fractures of the distal femur: comparison of titanium versus stainless steel and bicortical versus unicortical fixation. Beingessner D; Moon E; Barei D; Morshed S J Trauma; 2011 Sep; 71(3):620-4. PubMed ID: 21610539 [TBL] [Abstract][Full Text] [Related]
9. Comparative finite element analysis of the biomechanical stability of 2.0 fixation plates in atrophic mandibular fractures. Vajgel A; Camargo IB; Willmersdorf RB; de Melo TM; Laureano Filho JR; Vasconcellos RJ J Oral Maxillofac Surg; 2013 Feb; 71(2):335-42. PubMed ID: 23351762 [TBL] [Abstract][Full Text] [Related]
10. Kinematic and mechanical comparisons of lumbar hybrid fixation using Dynesys and Cosmic systems. Chien CY; Kuo YJ; Lin SC; Chuang WH; Luh YP Spine (Phila Pa 1976); 2014 Jul; 39(15):E878-84. PubMed ID: 24827511 [TBL] [Abstract][Full Text] [Related]
11. Computerized analysis of resorbable polymer plates and screws for the rigid fixation of mandibular angle fractures. Cox T; Kohn MW; Impelluso T J Oral Maxillofac Surg; 2003 Apr; 61(4):481-7; discussion 487-8. PubMed ID: 12684967 [TBL] [Abstract][Full Text] [Related]
12. Assessment of carbon fibre composite fracture fixation plate using finite element analysis. Saidpour SH Ann Biomed Eng; 2006 Jul; 34(7):1157-63. PubMed ID: 16732432 [TBL] [Abstract][Full Text] [Related]
13. A computational evaluation of the effect of intramedullary nail material properties on the stabilization of simulated femoral shaft fractures. Perez A; Mahar A; Negus C; Newton P; Impelluso T Med Eng Phys; 2008 Jul; 30(6):755-60. PubMed ID: 17905637 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical analysis of a synthetic femur spiral fracture model: Influence of different materials on the stiffness in flexible intramedullary nailing. Kaiser MM; Wessel LM; Zachert G; Stratmann C; Eggert R; Gros N; Schulze-Hessing M; Kienast B; Rapp M Clin Biomech (Bristol, Avon); 2011 Jul; 26(6):592-7. PubMed ID: 21345557 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of a new approach for modelling the screw-bone interface in a locking plate fixation: a corroboration study. Moazen M; Mak JH; Jones AC; Jin Z; Wilcox RK; Tsiridis E Proc Inst Mech Eng H; 2013 Jul; 227(7):746-56. PubMed ID: 23636756 [TBL] [Abstract][Full Text] [Related]
17. Increasing bending strength of tibial locking screws: mechanical tests and finite element analyses. Chao CK; Hsu CC; Wang JL; Lin J Clin Biomech (Bristol, Avon); 2007 Jan; 22(1):59-66. PubMed ID: 16959388 [TBL] [Abstract][Full Text] [Related]
18. Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data. Rohlmann A; Bauer L; Zander T; Bergmann G; Wilke HJ J Biomech; 2006; 39(6):981-9. PubMed ID: 16549091 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional finite element analysis of mechanical stress in symphyseal fractured human mandible reduced with miniplates during mastication. Wang H; Ji B; Jiang W; Liu L; Zhang P; Tang W; Tian W; Fan Y J Oral Maxillofac Surg; 2010 Jul; 68(7):1585-92. PubMed ID: 20434254 [TBL] [Abstract][Full Text] [Related]
20. Stimulation of implant fixation by parathyroid hormone (1-34)-A histomorphometric comparison of PMMA cement and stainless steel. Skripitz R; Böhling S; Rüther W; Aspenberg P J Orthop Res; 2005 Nov; 23(6):1266-70. PubMed ID: 15964166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]