These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25880855)

  • 1. Evaluation of genes involved in oxidative phosphorylation in yeast by developing a simple and rapid method to measure mitochondrial ATP synthetic activity.
    Ye X; Morikawa K; Ho SH; Araki M; Nishida K; Hasunuma T; Hara KY; Kondo A
    Microb Cell Fact; 2015 Apr; 14():56. PubMed ID: 25880855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sensitive, simple assay of mitochondrial ATP synthesis of cultured mammalian cells suitable for high-throughput analysis.
    Fujikawa M; Yoshida M
    Biochem Biophys Res Commun; 2010 Oct; 401(4):538-43. PubMed ID: 20875793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast mitochondria import ATP through the calcium-dependent ATP-Mg/Pi carrier Sal1p, and are ATP consumers during aerobic growth in glucose.
    Traba J; Froschauer EM; Wiesenberger G; Satrústegui J; Del Arco A
    Mol Microbiol; 2008 Aug; 69(3):570-85. PubMed ID: 18485069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods to monitor and compare mitochondrial and glycolytic ATP production.
    Patergnani S; Baldassari F; De Marchi E; Karkucinska-Wieckowska A; Wieckowski MR; Pinton P
    Methods Enzymol; 2014; 542():313-32. PubMed ID: 24862273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permeable cell assay: a method for high-throughput measurement of cellular ATP synthetic activity.
    Hara KY
    Methods Mol Biol; 2009; 577():251-8. PubMed ID: 19718522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the role of positive residues in the ADP/ATP carrier from yeast. The effect of six arginine mutations of oxidative phosphorylation and AAC expression.
    Müller V; Basset G; Nelson DR; Klingenberg M
    Biochemistry; 1996 Dec; 35(50):16132-43. PubMed ID: 8973185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring Rates of ATP Synthesis.
    Bird MJ; Radenkovic S; Vermeersch P; Cassiman D
    Methods Mol Biol; 2019; 1862():97-107. PubMed ID: 30315462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional assessment of isolated mitochondria in vitro.
    Lanza IR; Nair KS
    Methods Enzymol; 2009; 457():349-72. PubMed ID: 19426878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of adenine nucleotides in the mitochondria of Saccharomyces cerevisiae: interactions between the ADP/ATP carriers and the ATP-Mg/Pi carrier.
    Traba J; Satrústegui J; del Arco A
    Mitochondrion; 2009 Apr; 9(2):79-85. PubMed ID: 19460304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of Ca ions on the transmembrane electric potential, synthesis and hydrolysis of ATP in brain mitochondria].
    Karadzhov IuS; Kudzina LIu; Zinchenko VP
    Biofizika; 1988; 33(1):77-82. PubMed ID: 3370241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rapid mitochondrial toxicity assay utilizing rapidly changing cell energy metabolism.
    Sanuki Y; Araki T; Nakazono O; Tsurui K
    J Toxicol Sci; 2017; 42(3):349-358. PubMed ID: 28496041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurements of ATP in mammalian cells.
    Manfredi G; Yang L; Gajewski CD; Mattiazzi M
    Methods; 2002 Apr; 26(4):317-26. PubMed ID: 12054922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resveratrol mainly stimulates the glycolytic ATP synthesis flux and not the mitochondrial one: a saturation transfer NMR study in perfused and isolated rat liver.
    Beauvieux MC; Stephant A; Gin H; Serhan N; Couzigou P; Gallis JL
    Pharmacol Res; 2013 Dec; 78():11-7. PubMed ID: 24090928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP production in isolated mitochondria of procyclic Trypanosoma brucei.
    Schneider A; Bouzaidi-Tiali N; Chanez AL; Bulliard L
    Methods Mol Biol; 2007; 372():379-87. PubMed ID: 18314740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the pathogenesis of cell injury: effects of inhibitors of metabolism and membrane function on the mitochondria of Ehrlich ascites tumor cells.
    Laiho KU; Trump BF
    Lab Invest; 1975 Feb; 32(2):163-82. PubMed ID: 1113509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro interaction of nonsteroidal anti-inflammatory drugs on oxidative phosphorylation of rat kidney mitochondria: respiration and ATP synthesis.
    Mingatto FE; Santos AC; Uyemura SA; Jordani MC; Curti C
    Arch Biochem Biophys; 1996 Oct; 334(2):303-8. PubMed ID: 8900405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells.
    Nakashima RA; Paggi MG; Pedersen PL
    Cancer Res; 1984 Dec; 44(12 Pt 1):5702-6. PubMed ID: 6498833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A genome-wide shRNA screen for new OxPhos related genes.
    Bayona-Bafaluy MP; Sánchez-Cabo F; Fernández-Silva P; Pérez-Martos A; Enríquez JA
    Mitochondrion; 2011 May; 11(3):467-75. PubMed ID: 21292037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nature and regulation of the ATP-induced anion permeability in Saccharomyces cerevisiae mitochondria.
    Prieto S; Bouillaud F; Rial E
    Arch Biochem Biophys; 1996 Oct; 334(1):43-9. PubMed ID: 8837737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial ATP synthases cluster as discrete domains that reorganize with the cellular demand for oxidative phosphorylation.
    Jimenez L; Laporte D; Duvezin-Caubet S; Courtout F; Sagot I
    J Cell Sci; 2014 Feb; 127(Pt 4):719-26. PubMed ID: 24338369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.