BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 25880884)

  • 1. Self-assembled nanoparticle of common food constituents that carries a sparingly soluble small molecule.
    Bhopatkar D; Feng T; Chen F; Zhang G; Carignano M; Park SH; Zhuang H; Campanella OH; Hamaker BR
    J Agric Food Chem; 2015 May; 63(17):4312-9. PubMed ID: 25880884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphiphilic invertible polymers for adsolubilization on hydrophilic and hydrophobized silica nanoparticles.
    Sieburg L; Kohut A; Kislenko V; Voronov A
    J Colloid Interface Sci; 2010 Nov; 351(1):116-21. PubMed ID: 20716453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, characterization, and comparative analysis of amylose-guest complexes prepared by microwave irradiation.
    Ryno LM; Levine Y; Iovine PM
    Carbohydr Res; 2014 Jan; 383():82-8. PubMed ID: 24333898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single crystals of V-amylose complexed with alpha-naphthol.
    Cardoso MB; Putaux JL; Nishiyama Y; Helbert W; Hÿtch M; Silveira NP; Chanzy H
    Biomacromolecules; 2007 Apr; 8(4):1319-26. PubMed ID: 17348704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis and structural characterization of amylose-Fatty Acid inclusion complexes.
    Cao Z; Woortman AJ; Rudolf P; Loos K
    Macromol Biosci; 2015 May; 15(5):691-7. PubMed ID: 25641740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecular dynamics simulation study on the conformational stability of amylose-linoleic acid complex in water.
    Cheng L; Feng T; Zhang B; Zhu X; Hamaker B; Zhang H; Campanella O
    Carbohydr Polym; 2018 Sep; 196():56-65. PubMed ID: 29891324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amylose-fatty acid inclusion complexes as examined by interfacial tension measurements.
    Marinopoulou A; Kalogianni EP; Raphaelides SN
    Colloids Surf B Biointerfaces; 2016 Jan; 137():133-7. PubMed ID: 26193774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and efficient crossing blood-brain barrier: Hydrophobic drug delivery system based on propionylated amylose helix nanoclusters.
    Gao W; Liu Y; Jing G; Li K; Zhao Y; Sha B; Wang Q; Wu D
    Biomaterials; 2017 Jan; 113():133-144. PubMed ID: 27815997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent patents on amylose-flavor inclusion complex nano particles preparation and their application.
    Feng T; Zhuang HN; Xiao ZB; Tian HX
    Recent Pat Food Nutr Agric; 2011 Sep; 3(3):179-86. PubMed ID: 21846320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free fatty acids electronically bridge the self-assembly of a three-component nanocomplex consisting of amylose, protein, and free fatty acids.
    Zhang G; Maladen M; Campanella OH; Hamaker BR
    J Agric Food Chem; 2010 Aug; 58(16):9164-70. PubMed ID: 23654240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complexation process of amylose under different concentrations of linoleic acid using molecular dynamics simulation.
    Cheng L; Zhu X; Hamaker BR; Zhang H; Campanella OH
    Carbohydr Polym; 2019 Jul; 216():157-166. PubMed ID: 31047052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into formation and stability mechanism of V
    Li X; Li C; Feng J; Li T; Zhou D; Wu C; Fan G
    Int J Biol Macromol; 2024 Apr; 265(Pt 2):130930. PubMed ID: 38513898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymorphism of crystalline complexes of V-amylose with fatty acids.
    Le CA; Choisnard L; Wouessidjewe D; Putaux JL
    Int J Biol Macromol; 2018 Nov; 119():555-564. PubMed ID: 30059739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-soluble nanoparticles from random copolymer and oppositely charged surfactant, 3a. Nanoparticles of poly(ethylene glycol)-based cationic random copolymer and fatty acid salts.
    Kizhakkedathu JN; Nisha CK; Manorama SV; Maiti S
    Macromol Biosci; 2005 Jun; 5(6):549-58. PubMed ID: 15948231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of naphthalene derivatives with lipids in membranes studied by the 1H-nuclear Overhauser effect and molecular dynamics simulation.
    Shintani M; Matsuo Y; Sakuraba S; Matubayasi N
    Phys Chem Chem Phys; 2012 Oct; 14(40):14049-60. PubMed ID: 22983117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological characteristics, oxidative stability and enzymic hydrolysis of amylose-fatty acid complexes.
    Marinopoulou A; Papastergiadis E; Raphaelides SN; Kontominas MG
    Carbohydr Polym; 2016 May; 141():106-15. PubMed ID: 26877002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complexation Mechanisms of Aqueous Amylose: Molecular Dynamics Study Using 3-Pentadecylphenol.
    Skrdla PJ; Coscia BJ; Gavartin J; Browning A; Shelley J; Sanders JM
    Mol Pharm; 2024 Jul; 21(7):3540-3552. PubMed ID: 38900044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of modified high-amylose maize starch-α-naphthol complexes and their influence on rheological properties of wheat starch.
    Zhu F; Wang YJ
    Food Chem; 2013 May; 138(1):256-62. PubMed ID: 23265485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly.
    Spaeth JR; Kevrekidis IG; Panagiotopoulos AZ
    J Chem Phys; 2011 Nov; 135(18):184903. PubMed ID: 22088077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of short-chain fatty acids on the formation of amylose microparticles by amylosucrase.
    Lim MC; Park KH; Choi JH; Lee DH; Letona CAM; Baik MY; Park CS; Kim YR
    Carbohydr Polym; 2016 Oct; 151():606-613. PubMed ID: 27474606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.