BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

590 related articles for article (PubMed ID: 25881057)

  • 21. Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands.
    Joost P; Methner A
    Genome Biol; 2002 Oct; 3(11):RESEARCH0063. PubMed ID: 12429062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of rhodopsin in complex with a mini-G
    Tsai CJ; Pamula F; Nehmé R; Mühle J; Weinert T; Flock T; Nogly P; Edwards PC; Carpenter B; Gruhl T; Ma P; Deupi X; Standfuss J; Tate CG; Schertler GFX
    Sci Adv; 2018 Sep; 4(9):eaat7052. PubMed ID: 30255144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure. Rhodopsin sees the light.
    Bourne HR; Meng EC
    Science; 2000 Aug; 289(5480):733-4. PubMed ID: 10950717
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery.
    Huber T; Menon S; Sakmar TP
    Biochemistry; 2008 Oct; 47(42):11013-23. PubMed ID: 18821775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors.
    Woods KN; Pfeffer J; Dutta A; Klein-Seetharaman J
    Sci Rep; 2016 Nov; 6():37290. PubMed ID: 27849063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications.
    Cvicek V; Goddard WA; Abrol R
    PLoS Comput Biol; 2016 Mar; 12(3):e1004805. PubMed ID: 27028541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A constitutively activating mutation alters the dynamics and energetics of a key conformational change in a ligand-free G protein-coupled receptor.
    Tsukamoto H; Farrens DL
    J Biol Chem; 2013 Sep; 288(39):28207-16. PubMed ID: 23940032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cross genome phylogenetic analysis of human and Drosophila G protein-coupled receptors: application to functional annotation of orphan receptors.
    Metpally RP; Sowdhamini R
    BMC Genomics; 2005 Aug; 6():106. PubMed ID: 16091152
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A G protein-coupled receptor at work: the rhodopsin model.
    Hofmann KP; Scheerer P; Hildebrand PW; Choe HW; Park JH; Heck M; Ernst OP
    Trends Biochem Sci; 2009 Nov; 34(11):540-52. PubMed ID: 19836958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Buried ionizable networks are an ancient hallmark of G protein-coupled receptor activation.
    Isom DG; Dohlman HG
    Proc Natl Acad Sci U S A; 2015 May; 112(18):5702-7. PubMed ID: 25902551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of new genes explains lower intron density in mammalian Rhodopsin G protein-coupled receptors.
    Fridmanis D; Fredriksson R; Kapa I; Schiöth HB; Klovins J
    Mol Phylogenet Evol; 2007 Jun; 43(3):864-80. PubMed ID: 17188520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The fourth intracellular domain of G-protein coupling receptors: helicity, basicity and similarity to opsins.
    Parker MS; Parker SL
    Amino Acids; 2010 Jan; 38(1):1-13. PubMed ID: 19565325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel chemogenomics analysis of G protein-coupled receptors (GPCRs) and their ligands: a potential strategy for receptor de-orphanization.
    van der Horst E; Peironcely JE; Ijzerman AP; Beukers MW; Lane JR; van Vlijmen HW; Emmerich MT; Okuno Y; Bender A
    BMC Bioinformatics; 2010 Jun; 11():316. PubMed ID: 20537162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational changes of G protein-coupled receptors during their activation by agonist binding.
    Bissantz C
    J Recept Signal Transduct Res; 2003; 23(2-3):123-53. PubMed ID: 14626443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors.
    Surgand JS; Rodrigo J; Kellenberger E; Rognan D
    Proteins; 2006 Feb; 62(2):509-38. PubMed ID: 16294340
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The structural basis of agonist-induced activation in constitutively active rhodopsin.
    Standfuss J; Edwards PC; D'Antona A; Fransen M; Xie G; Oprian DD; Schertler GF
    Nature; 2011 Mar; 471(7340):656-60. PubMed ID: 21389983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Structural studies on G protein-coupled receptors].
    Iwata S; Iwata M
    Tanpakushitsu Kakusan Koso; 2009 Sep; 54(12 Suppl):1605-10. PubMed ID: 21089595
    [No Abstract]   [Full Text] [Related]  

  • 38. The GPCR repertoire in the demosponge Amphimedon queenslandica: insights into the GPCR system at the early divergence of animals.
    Krishnan A; Dnyansagar R; Almén MS; Williams MJ; Fredriksson R; Manoj N; Schiöth HB
    BMC Evol Biol; 2014 Dec; 14():270. PubMed ID: 25528161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GPCR agonists and antagonists in the clinic.
    Tyndall JD; Sandilya R
    Med Chem; 2005 Jul; 1(4):405-21. PubMed ID: 16789897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors.
    Ballesteros JA; Shi L; Javitch JA
    Mol Pharmacol; 2001 Jul; 60(1):1-19. PubMed ID: 11408595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.