BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1290 related articles for article (PubMed ID: 25881092)

  • 1. De novo transcriptome assembly of the wild relative of tea tree (Camellia taliensis) and comparative analysis with tea transcriptome identified putative genes associated with tea quality and stress response.
    Zhang HB; Xia EH; Huang H; Jiang JJ; Liu BY; Gao LZ
    BMC Genomics; 2015 Apr; 16(1):298. PubMed ID: 25881092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds.
    Shi CY; Yang H; Wei CL; Yu O; Zhang ZZ; Jiang CJ; Sun J; Li YY; Chen Q; Xia T; Wan XC
    BMC Genomics; 2011 Feb; 12():131. PubMed ID: 21356090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo comparative transcriptome analysis provides new insights into sucrose induced somatic embryogenesis in camphor tree (Cinnamomum camphora L.).
    Shi X; Zhang C; Liu Q; Zhang Z; Zheng B; Bao M
    BMC Genomics; 2016 Jan; 17():26. PubMed ID: 26727885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo transcriptome sequencing and comprehensive analysis of the drought-responsive genes in the desert plant Cynanchum komarovii.
    Ma X; Wang P; Zhou S; Sun Y; Liu N; Li X; Hou Y
    BMC Genomics; 2015 Oct; 16():753. PubMed ID: 26444539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De Novo Transcriptome Sequencing of Oryza officinalis Wall ex Watt to Identify Disease-Resistance Genes.
    He B; Gu Y; Tao X; Cheng X; Wei C; Fu J; Cheng Z; Zhang Y
    Int J Mol Sci; 2015 Dec; 16(12):29482-95. PubMed ID: 26690414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation.
    Sun H; Liu Y; Gai Y; Geng J; Chen L; Liu H; Kang L; Tian Y; Li Y
    BMC Genomics; 2015 Sep; 16(1):652. PubMed ID: 26330221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis).
    Li CF; Zhu Y; Yu Y; Zhao QY; Wang SJ; Wang XC; Yao MZ; Luo D; Li X; Chen L; Yang YJ
    BMC Genomics; 2015 Jul; 16(1):560. PubMed ID: 26220550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes.
    Dong B; Wu B; Hong W; Li X; Li Z; Xue L; Huang Y
    PLoS One; 2017; 12(7):e0181835. PubMed ID: 28759610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized sequencing depth and de novo assembler for deeply reconstructing the transcriptome of the tea plant, an economically important plant species.
    Li FD; Tong W; Xia EH; Wei CL
    BMC Bioinformatics; 2019 Nov; 20(1):553. PubMed ID: 31694521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach.
    Mehta RH; Ponnuchamy M; Kumar J; Reddy NR
    Funct Integr Genomics; 2017 Jan; 17(1):1-25. PubMed ID: 27709374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic Analysis of Paeonia delavayi Wild Population Flowers to Identify Differentially Expressed Genes Involved in Purple-Red and Yellow Petal Pigmentation.
    Shi Q; Zhou L; Wang Y; Li K; Zheng B; Miao K
    PLoS One; 2015; 10(8):e0135038. PubMed ID: 26267644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo transcriptome analysis of Rhododendron molle G. Don flowers by Illumina sequencing.
    Xiao Z; Su J; Sun X; Li C; He L; Cheng S; Liu X
    Genes Genomics; 2018 Jun; 40(6):591-601. PubMed ID: 29892944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq.
    Wang YN; Tang L; Hou Y; Wang P; Yang H; Wei CL
    Funct Integr Genomics; 2016 Jul; 16(4):383-98. PubMed ID: 27098524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo transcriptome analysis of Liriodendron chinense petals and leaves by Illumina sequencing.
    Yang Y; Xu M; Luo Q; Wang J; Li H
    Gene; 2014 Jan; 534(2):155-62. PubMed ID: 24239772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data.
    Tian XJ; Long Y; Wang J; Zhang JW; Wang YY; Li WM; Peng YF; Yuan QH; Pei XW
    PLoS One; 2015; 10(7):e0131455. PubMed ID: 26134138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolome and Transcriptome Analysis Reveals Putative Genes Involved in Anthocyanin Accumulation and Coloration in White and Pink Tea (
    Zhou C; Mei X; Rothenberg DO; Yang Z; Zhang W; Wan S; Yang H; Zhang L
    Molecules; 2020 Jan; 25(1):. PubMed ID: 31906542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo sequencing analysis of the Rosa roxburghii fruit transcriptome reveals putative ascorbate biosynthetic genes and EST-SSR markers.
    Yan X; Zhang X; Lu M; He Y; An H
    Gene; 2015 Apr; 561(1):54-62. PubMed ID: 25701597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-Seq Based De Novo Transcriptome Assembly and Gene Discovery of Cistanche deserticola Fleshy Stem.
    Li Y; Wang X; Chen T; Yao F; Li C; Tang Q; Sun M; Sun G; Hu S; Yu J; Song S
    PLoS One; 2015; 10(5):e0125722. PubMed ID: 25938435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global transcriptome analysis of Huperzia serrata and identification of critical genes involved in the biosynthesis of huperzine A.
    Yang M; You W; Wu S; Fan Z; Xu B; Zhu M; Li X; Xiao Y
    BMC Genomics; 2017 Mar; 18(1):245. PubMed ID: 28330463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo transcriptome sequencing and analysis of the juvenile and adult stages of Fasciola gigantica.
    Zhang XX; Cong W; Elsheikha HM; Liu GH; Ma JG; Huang WY; Zhao Q; Zhu XQ
    Infect Genet Evol; 2017 Jul; 51():33-40. PubMed ID: 28286139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 65.