These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1095 related articles for article (PubMed ID: 25881092)
1. De novo transcriptome assembly of the wild relative of tea tree (Camellia taliensis) and comparative analysis with tea transcriptome identified putative genes associated with tea quality and stress response. Zhang HB; Xia EH; Huang H; Jiang JJ; Liu BY; Gao LZ BMC Genomics; 2015 Apr; 16(1):298. PubMed ID: 25881092 [TBL] [Abstract][Full Text] [Related]
2. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. Shi CY; Yang H; Wei CL; Yu O; Zhang ZZ; Jiang CJ; Sun J; Li YY; Chen Q; Xia T; Wan XC BMC Genomics; 2011 Feb; 12():131. PubMed ID: 21356090 [TBL] [Abstract][Full Text] [Related]
3. De Novo Transcriptome Sequencing of Oryza officinalis Wall ex Watt to Identify Disease-Resistance Genes. He B; Gu Y; Tao X; Cheng X; Wei C; Fu J; Cheng Z; Zhang Y Int J Mol Sci; 2015 Dec; 16(12):29482-95. PubMed ID: 26690414 [TBL] [Abstract][Full Text] [Related]
4. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation. Sun H; Liu Y; Gai Y; Geng J; Chen L; Liu H; Kang L; Tian Y; Li Y BMC Genomics; 2015 Sep; 16(1):652. PubMed ID: 26330221 [TBL] [Abstract][Full Text] [Related]
5. De novo comparative transcriptome analysis provides new insights into sucrose induced somatic embryogenesis in camphor tree (Cinnamomum camphora L.). Shi X; Zhang C; Liu Q; Zhang Z; Zheng B; Bao M BMC Genomics; 2016 Jan; 17():26. PubMed ID: 26727885 [TBL] [Abstract][Full Text] [Related]
6. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). Li CF; Zhu Y; Yu Y; Zhao QY; Wang SJ; Wang XC; Yao MZ; Luo D; Li X; Chen L; Yang YJ BMC Genomics; 2015 Jul; 16(1):560. PubMed ID: 26220550 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes. Dong B; Wu B; Hong W; Li X; Li Z; Xue L; Huang Y PLoS One; 2017; 12(7):e0181835. PubMed ID: 28759610 [TBL] [Abstract][Full Text] [Related]
8. Optimized sequencing depth and de novo assembler for deeply reconstructing the transcriptome of the tea plant, an economically important plant species. Li FD; Tong W; Xia EH; Wei CL BMC Bioinformatics; 2019 Nov; 20(1):553. PubMed ID: 31694521 [TBL] [Abstract][Full Text] [Related]
9. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach. Mehta RH; Ponnuchamy M; Kumar J; Reddy NR Funct Integr Genomics; 2017 Jan; 17(1):1-25. PubMed ID: 27709374 [TBL] [Abstract][Full Text] [Related]
10. Transcriptomic Analysis of Paeonia delavayi Wild Population Flowers to Identify Differentially Expressed Genes Involved in Purple-Red and Yellow Petal Pigmentation. Shi Q; Zhou L; Wang Y; Li K; Zheng B; Miao K PLoS One; 2015; 10(8):e0135038. PubMed ID: 26267644 [TBL] [Abstract][Full Text] [Related]
11. De novo transcriptome analysis of Rhododendron molle G. Don flowers by Illumina sequencing. Xiao Z; Su J; Sun X; Li C; He L; Cheng S; Liu X Genes Genomics; 2018 Jun; 40(6):591-601. PubMed ID: 29892944 [TBL] [Abstract][Full Text] [Related]
12. Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq. Wang YN; Tang L; Hou Y; Wang P; Yang H; Wei CL Funct Integr Genomics; 2016 Jul; 16(4):383-98. PubMed ID: 27098524 [TBL] [Abstract][Full Text] [Related]
13. De novo transcriptome analysis of Liriodendron chinense petals and leaves by Illumina sequencing. Yang Y; Xu M; Luo Q; Wang J; Li H Gene; 2014 Jan; 534(2):155-62. PubMed ID: 24239772 [TBL] [Abstract][Full Text] [Related]
14. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data. Tian XJ; Long Y; Wang J; Zhang JW; Wang YY; Li WM; Peng YF; Yuan QH; Pei XW PLoS One; 2015; 10(7):e0131455. PubMed ID: 26134138 [TBL] [Abstract][Full Text] [Related]
15. Metabolome and Transcriptome Analysis Reveals Putative Genes Involved in Anthocyanin Accumulation and Coloration in White and Pink Tea ( Zhou C; Mei X; Rothenberg DO; Yang Z; Zhang W; Wan S; Yang H; Zhang L Molecules; 2020 Jan; 25(1):. PubMed ID: 31906542 [TBL] [Abstract][Full Text] [Related]
16. De novo sequencing analysis of the Rosa roxburghii fruit transcriptome reveals putative ascorbate biosynthetic genes and EST-SSR markers. Yan X; Zhang X; Lu M; He Y; An H Gene; 2015 Apr; 561(1):54-62. PubMed ID: 25701597 [TBL] [Abstract][Full Text] [Related]
17. RNA-Seq Based De Novo Transcriptome Assembly and Gene Discovery of Cistanche deserticola Fleshy Stem. Li Y; Wang X; Chen T; Yao F; Li C; Tang Q; Sun M; Sun G; Hu S; Yu J; Song S PLoS One; 2015; 10(5):e0125722. PubMed ID: 25938435 [TBL] [Abstract][Full Text] [Related]
18. Global transcriptome analysis of Huperzia serrata and identification of critical genes involved in the biosynthesis of huperzine A. Yang M; You W; Wu S; Fan Z; Xu B; Zhu M; Li X; Xiao Y BMC Genomics; 2017 Mar; 18(1):245. PubMed ID: 28330463 [TBL] [Abstract][Full Text] [Related]
19. De novo transcriptome sequencing and analysis of the juvenile and adult stages of Fasciola gigantica. Zhang XX; Cong W; Elsheikha HM; Liu GH; Ma JG; Huang WY; Zhao Q; Zhu XQ Infect Genet Evol; 2017 Jul; 51():33-40. PubMed ID: 28286139 [TBL] [Abstract][Full Text] [Related]