BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25881153)

  • 1. From waste water treatment to land management: Conversion of aquatic biomass to biochar for soil amelioration and the fortification of crops with essential trace elements.
    Roberts DA; Paul NA; Cole AJ; de Nys R
    J Environ Manage; 2015 Jul; 157():60-8. PubMed ID: 25881153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass.
    Roberts DA; Cole AJ; Paul NA; de Nys R
    J Environ Manage; 2015 Sep; 161():173-180. PubMed ID: 26172107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioremediation of a complex industrial effluent by biosorbents derived from freshwater macroalgae.
    Kidgell JT; de Nys R; Hu Y; Paul NA; Roberts DA
    PLoS One; 2014; 9(2):e94706. PubMed ID: 24919058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioremediation for coal-fired power stations using macroalgae.
    Roberts DA; Paul NA; Bird MI; de Nys R
    J Environ Manage; 2015 Apr; 153():25-32. PubMed ID: 25646673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of feedstock pre-treatment and pyrolysis temperature on the production of biochar from the green seaweed Ulva.
    Roberts DA; de Nys R
    J Environ Manage; 2016 Mar; 169():253-60. PubMed ID: 26773429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous biosorption of selenium, arsenic and molybdenum with modified algal-based biochars.
    Johansson CL; Paul NA; de Nys R; Roberts DA
    J Environ Manage; 2016 Jan; 165():117-123. PubMed ID: 26413805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil application of biochar produced from biomass grown on trace element contaminated land.
    Evangelou MWH; Brem A; Ugolini F; Abiven S; Schulin R
    J Environ Manage; 2014 Dec; 146():100-106. PubMed ID: 25163600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The sequential application of macroalgal biosorbents for the bioremediation of a complex industrial effluent.
    Kidgell JT; de Nys R; Paul NA; Roberts DA
    PLoS One; 2014; 9(7):e101309. PubMed ID: 25061756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trace element bioavailability, yield and seed quality of rapeseed (Brassica napus L.) modulated by biochar incorporation into a contaminated technosol.
    Marchand L; Pelosi C; González-Centeno MR; Maillard A; Ourry A; Galland W; Teissedre PL; Bessoule JJ; Mongrand S; Morvan-Bertrand A; Zhang Q; Grosbellet C; Bert V; Oustrière N; Mench M; Brunel-Muguet S
    Chemosphere; 2016 Aug; 156():150-162. PubMed ID: 27174828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of tailored biochar in increasing plant growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil.
    Mohamed BA; Ellis N; Kim CS; Bi X
    Environ Pollut; 2017 Nov; 230():329-338. PubMed ID: 28668594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of heavy metals under an oil crop rotation and treatment of biochar from contaminated biomass for safe use.
    Zhou J; Chen LH; Peng L; Luo S; Zeng QR
    Chemosphere; 2020 May; 247():125856. PubMed ID: 31951954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation.
    Saunders RJ; Paul NA; Hu Y; de Nys R
    PLoS One; 2012; 7(5):e36470. PubMed ID: 22590550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash.
    Lucchini P; Quilliam RS; Deluca TH; Vamerali T; Jones DL
    Environ Sci Pollut Res Int; 2014 Mar; 21(5):3230-40. PubMed ID: 24217969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suitability of marginal biomass-derived biochars for soil amendment.
    Buss W; Graham MC; Shepherd JG; Mašek O
    Sci Total Environ; 2016 Mar; 547():314-322. PubMed ID: 26789369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Amelioration effects of wastewater sludge biochars on red soil acidity and their environmental risk].
    Lu ZL; Li JY; Jiang J; Xu RK
    Huan Jing Ke Xue; 2012 Oct; 33(10):3585-91. PubMed ID: 23233992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.
    Liang Y; Cao X; Zhao L; Arellano E
    Environ Sci Pollut Res Int; 2014 Mar; 21(6):4665-74. PubMed ID: 24352548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of biochar amendment on metal mobility, phytotoxicity, soil enzymes, and metal-uptakes by wheat (Triticum aestivum) in contaminated soils.
    Pandey B; Suthar S; Chand N
    Chemosphere; 2022 Nov; 307(Pt 2):135889. PubMed ID: 35944681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of CO2 on algal growth in industrial waste water for bioenergy and bioremediation applications.
    Roberts DA; de Nys R; Paul NA
    PLoS One; 2013; 8(11):e81631. PubMed ID: 24278451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of wood waste biochar and food waste compost in a pilot-scale sustainable drainage system for stormwater treatment.
    Buates J; Sun Y; He M; Mohanty SK; Khan E; Tsang DCW
    Environ Pollut; 2024 May; 348():123767. PubMed ID: 38492753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of co-composted biochar significantly improved plant-growth relevant physical/chemical properties of a metal contaminated soil.
    Teodoro M; Trakal L; Gallagher BN; Šimek P; Soudek P; Pohořelý M; Beesley L; Jačka L; Kovář M; Seyedsadr S; Mohan D
    Chemosphere; 2020 Mar; 242():125255. PubMed ID: 31896180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.