These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25881158)

  • 1. Assessment of wall elasticity variations on intraluminal haemodynamics in descending aortic dissections using a lumped-parameter model.
    Rudenick PA; Bijnens BH; Segers P; García-Dorado D; Evangelista A
    PLoS One; 2015; 10(4):e0124011. PubMed ID: 25881158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. False Lumen Flow Patterns and their Relation with Morphological and Biomechanical Characteristics of Chronic Aortic Dissections. Computational Model Compared with Magnetic Resonance Imaging Measurements.
    Rudenick PA; Segers P; Pineda V; Cuellar H; García-Dorado D; Evangelista A; Bijnens BH
    PLoS One; 2017; 12(1):e0170888. PubMed ID: 28125720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood flow in a compliant vessel by the immersed boundary method.
    Kim Y; Lim S; Raman SV; Simonetti OP; Friedman A
    Ann Biomed Eng; 2009 May; 37(5):927-42. PubMed ID: 19283479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biphasic, anisotropic model of the aortic wall.
    Johnson M; Tarbell JM
    J Biomech Eng; 2001 Feb; 123(1):52-7. PubMed ID: 11277302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The combined impact of mechanical factors on the wall stress of the human ascending aorta - a finite elements study.
    Plonek T; Zak M; Burzynska K; Rylski B; Gozdzik A; Kustrzycki W; Beyersdorf F; Jasinski M; Filipiak J
    BMC Cardiovasc Disord; 2017 Dec; 17(1):297. PubMed ID: 29262774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.
    Pekkan K; Dur O; Sundareswaran K; Kanter K; Fogel M; Yoganathan A; Undar A
    J Biomech Eng; 2008 Dec; 130(6):061012. PubMed ID: 19045541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics.
    Ene F; Delassus P; Morris L
    Proc Inst Mech Eng H; 2014 Aug; 228(8):768-80. PubMed ID: 25085698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arterial elastance and wave reflection augmentation of systolic blood pressure: deleterious effects and implications for therapy.
    Nichols WW; Edwards DG
    J Cardiovasc Pharmacol Ther; 2001 Jan; 6(1):5-21. PubMed ID: 11452332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards new indices of arterial stiffness using systolic pulse contour analysis: a theoretical point of view.
    Chemla D; Plamann K; Nitenberg A
    J Cardiovasc Pharmacol; 2008 Feb; 51(2):111-7. PubMed ID: 18287877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational fluid dynamics study on geometrical influence of the aorta on haemodynamics.
    Tse KM; Chang R; Lee HP; Lim SP; Venkatesh SK; Ho P
    Eur J Cardiothorac Surg; 2013 Apr; 43(4):829-38. PubMed ID: 22766960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsatile flow inside moderately elastic arteries, its modelling and effects of elasticity.
    Pedrizzetti G; Domenichini F; Tortoriello A; Zovatto L
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):219-31. PubMed ID: 12186714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multiscale approach for modelling wave propagation in an arterial segment.
    Pontrelli G
    Comput Methods Biomech Biomed Engin; 2004 Apr; 7(2):79-89. PubMed ID: 15203956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aortic Function's Adaptation in Response to Exercise-Induced Stress Assessing by 1.5T MRI: A Pilot Study in Healthy Volunteers.
    Bal-Theoleyre L; Lalande A; Kober F; Giorgi R; Collart F; Piquet P; Habib G; Avierinos JF; Bernard M; Guye M; Jacquier A
    PLoS One; 2016; 11(6):e0157704. PubMed ID: 27310400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The physiological impact of the nonlinearity of arterial elasticity in the ambulatory arterial stiffness index.
    Craiem D; Graf S; Salvucci F; Chironi G; Megnien JL; Simon A; Armentano RL
    Physiol Meas; 2010 Jul; 31(7):1037-46. PubMed ID: 20585150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental foundation for in vivo measurement of the elasticity of the aorta in computed tomography angiography.
    Schlicht MS; Khanafer K; Duprey A; Cronin P; Berguer R
    Eur J Vasc Endovasc Surg; 2013 Oct; 46(4):447-52. PubMed ID: 23932205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow-induced wall shear stress in abdominal aortic aneurysms: Part I--steady flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):309-18. PubMed ID: 12186710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-induced wall shear stress in abdominal aortic aneurysms: Part II--pulsatile flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):319-28. PubMed ID: 12186711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Modeling of elastic deformation and vascular resistance of arterial and venous vasa vasorum].
    Maurice G; Wang X; Lehalle B; Stoltz JF
    J Mal Vasc; 1998 Oct; 23(4):282-8. PubMed ID: 9827409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid mechanics of Windkessel effect.
    Mei CC; Zhang J; Jing HX
    Med Biol Eng Comput; 2018 Aug; 56(8):1357-1366. PubMed ID: 29308546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.