These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25881158)

  • 21. Patient-specific haemodynamic simulations of complex aortic dissections informed by commonly available clinical datasets.
    Bonfanti M; Franzetti G; Maritati G; Homer-Vanniasinkam S; Balabani S; Díaz-Zuccarini V
    Med Eng Phys; 2019 Sep; 71():45-55. PubMed ID: 31257054
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flow dynamics in expansions characterizing abdominal aorta aneurysms.
    Ekaterinaris JA; Ioannou CV; Katsamouris AN
    Ann Vasc Surg; 2006 May; 20(3):351-9. PubMed ID: 16779517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A computational model to predict aortic wall stresses in patients with systolic arterial hypertension.
    Giannakoulas G; Giannoglou G; Soulis J; Farmakis T; Papadopoulou S; Parcharidis G; Louridas G
    Med Hypotheses; 2005; 65(6):1191-5. PubMed ID: 16107302
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental investigation of the influence of the aortic stiffness on hemodynamics in the ascending aorta.
    Gülan U; Lüthi B; Holzner M; Liberzon A; Tsinober A; Kinzelbach W
    IEEE J Biomed Health Inform; 2014 Nov; 18(6):1775-80. PubMed ID: 24833608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Smooth muscle relaxation and local hydraulic impedance properties of the aorta.
    Cholley BP; Lang RM; Korcarz CE; Shroff SG
    J Appl Physiol (1985); 2001 Jun; 90(6):2427-38. PubMed ID: 11356810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Volume elasticity, modulus of elasticity and compliance of normal and arteriosclerotic human aorta.
    Richter HA; Mittermayer C
    Biorheology; 1984; 21(5):723-34. PubMed ID: 6518285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model.
    Kim HJ; Vignon-Clementel IE; Figueroa CA; LaDisa JF; Jansen KE; Feinstein JA; Taylor CA
    Ann Biomed Eng; 2009 Nov; 37(11):2153-69. PubMed ID: 19609676
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clinical validation and assessment of aortic hemodynamics using computational fluid dynamics simulations from computed tomography angiography.
    Zhu Y; Chen R; Juan YH; Li H; Wang J; Yu Z; Liu H
    Biomed Eng Online; 2018 May; 17(1):53. PubMed ID: 29720173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accuracy vs. computational time: translating aortic simulations to the clinic.
    Brown AG; Shi Y; Marzo A; Staicu C; Valverde I; Beerbaum P; Lawford PV; Hose DR
    J Biomech; 2012 Feb; 45(3):516-23. PubMed ID: 22189248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In-vivo assessment of the morphology and hemodynamic functions of the BioValsalva™ composite valve-conduit graft using cardiac magnetic resonance imaging and computational modelling technology.
    Kidher E; Cheng Z; Jarral OA; O'Regan DP; Xu XY; Athanasiou T
    J Cardiothorac Surg; 2014 Dec; 9():193. PubMed ID: 25488105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models.
    Reymond P; Crosetto P; Deparis S; Quarteroni A; Stergiopulos N
    Med Eng Phys; 2013 Jun; 35(6):784-91. PubMed ID: 22981220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational analysis of blood flow in an integrated model of the left ventricle and the aorta.
    Nakamura M; Wada S; Yamaguchi T
    J Biomech Eng; 2006 Dec; 128(6):837-43. PubMed ID: 17154683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hemodynamic consequences of replacing the aorta by vascular grafts simulated in a mathematical model.
    Schulz S; Bauernschmitt R; Schwarzhaupt A; Vahl CF; Kiencke U
    Biomed Sci Instrum; 1997; 34():263-8. PubMed ID: 9603050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlation between the characteristics of acceleration and visco elasticity of artery wall under pulsatile flow conditions (physical meaning of I* as a parameter of progressive behaviors of atherosclerosis and arteriosclerosis).
    Yokobori AT; Ohmi T; Monma R; Tomono Y; Inoue K; Owa M; Ichiki M; Mochizuki N; Yamashita H
    Biomed Mater Eng; 2013; 23(1-2):75-91. PubMed ID: 23442239
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational fluid dynamic simulations of aortic coarctation comparing the effects of surgical- and stent-based treatments on aortic compliance and ventricular workload.
    Coogan JS; Chan FP; Taylor CA; Feinstein JA
    Catheter Cardiovasc Interv; 2011 Apr; 77(5):680-91. PubMed ID: 21061250
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational analysis of aortic hemodynamics during total and partial extracorporeal membrane oxygenation and intra-aortic balloon pump support.
    Caruso MV; Gramigna V; Renzulli A; Fragomeni G
    Acta Bioeng Biomech; 2016; 18(3):3-9. PubMed ID: 27840434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Experimental Evaluation of Device/Arterial Wall Compliance Mismatch for Four Stent-Graft Devices and a Multi-layer Flow Modulator Device for the Treatment of Abdominal Aortic Aneurysms.
    Morris L; Stefanov F; Hynes N; Diethrich EB; Sultan S
    Eur J Vasc Endovasc Surg; 2016 Jan; 51(1):44-55. PubMed ID: 26363972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Relationship Between Pulsatile Flow Impingement and Intraluminal Thrombus Deposition in Abdominal Aortic Aneurysms.
    Lozowy RJ; Kuhn DC; Ducas AA; Boyd AJ
    Cardiovasc Eng Technol; 2017 Mar; 8(1):57-69. PubMed ID: 27896659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hemodynamic analysis of outflow grafting positions of a ventricular assist device using closed-loop multiscale CFD simulations: Preliminary results.
    Neidlin M; Corsini C; Sonntag SJ; Schulte-Eistrup S; Schmitz-Rode T; Steinseifer U; Pennati G; Kaufmann TAS
    J Biomech; 2016 Sep; 49(13):2718-2725. PubMed ID: 27298155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pressure-flow loops and instantaneous input impedance in the thoracic aorta: another way to assess the effect of aortic bypass graft implantation on myocardial, brain, and subdiaphragmatic perfusion.
    Mekkaoui C; Rolland PH; Friggi A; Rasigni M; Mesana TG
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):699-710. PubMed ID: 12658214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.