BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25881247)

  • 1. Integrative analysis of survival-associated gene sets in breast cancer.
    Varn FS; Ung MH; Lou SK; Cheng C
    BMC Med Genomics; 2015 Mar; 8():11. PubMed ID: 25881247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. E2F4 regulatory program predicts patient survival prognosis in breast cancer.
    Khaleel SS; Andrews EH; Ung M; DiRenzo J; Cheng C
    Breast Cancer Res; 2014 Dec; 16(6):486. PubMed ID: 25440089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixture classification model based on clinical markers for breast cancer prognosis.
    Zeng T; Liu J
    Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.
    Maruschke M; Reuter D; Koczan D; Hakenberg OW; Thiesen HJ
    BJU Int; 2011 Jul; 108(2 Pt 2):E29-35. PubMed ID: 21435154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The expression pattern of matrix-producing tumor stroma is of prognostic importance in breast cancer.
    Winslow S; Lindquist KE; Edsjö A; Larsson C
    BMC Cancer; 2016 Nov; 16(1):841. PubMed ID: 27809802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudogene-gene functional networks are prognostic of patient survival in breast cancer.
    Smerekanych S; Johnson TS; Huang K; Zhang Y
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):51. PubMed ID: 32241256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide screen identifies a novel prognostic signature for breast cancer survival.
    Mao XY; Lee MJ; Zhu J; Zhu C; Law SM; Snijders AM
    Oncotarget; 2017 Feb; 8(8):14003-14016. PubMed ID: 28122328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data.
    Zou M; Liu Z; Zhang XS; Wang Y
    Bioinformatics; 2015 Oct; 31(20):3330-8. PubMed ID: 26092859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a robust gene signature that predicts breast cancer outcome in independent data sets.
    Korkola JE; Blaveri E; DeVries S; Moore DH; Hwang ES; Chen YY; Estep AL; Chew KL; Jensen RH; Waldman FM
    BMC Cancer; 2007 Apr; 7():61. PubMed ID: 17428335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association between expression of random gene sets and survival is evident in multiple cancer types and may be explained by sub-classification.
    Shimoni Y
    PLoS Comput Biol; 2018 Feb; 14(2):e1006026. PubMed ID: 29470520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fuzzy logic selection as a new reliable tool to identify molecular grade signatures in breast cancer--the INNODIAG study.
    Kempowsky-Hamon T; Valle C; Lacroix-Triki M; Hedjazi L; Trouilh L; Lamarre S; Labourdette D; Roger L; Mhamdi L; Dalenc F; Filleron T; Favre G; François JM; Le Lann MV; Anton-Leberre V
    BMC Med Genomics; 2015 Feb; 8():3. PubMed ID: 25888889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consensus genes of the literature to predict breast cancer recurrence.
    Lauss M; Kriegner A; Vierlinger K; Visne I; Yildiz A; Dilaveroglu E; Noehammer C
    Breast Cancer Res Treat; 2008 Jul; 110(2):235-44. PubMed ID: 17899371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of public cancer datasets and signatures identifies TP53 mutant signatures with robust prognostic and predictive value.
    Lehmann BD; Ding Y; Viox DJ; Jiang M; Zheng Y; Liao W; Chen X; Xiang W; Yi Y
    BMC Cancer; 2015 Mar; 15():179. PubMed ID: 25886164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sense-antisense gene-pairs in breast cancer and associated pathological pathways.
    Grinchuk OV; Motakis E; Yenamandra SP; Ow GS; Jenjaroenpun P; Tang Z; Yarmishyn AA; Ivshina AV; Kuznetsov VA
    Oncotarget; 2015 Dec; 6(39):42197-221. PubMed ID: 26517092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prognostic stromal gene signatures in breast cancer.
    Winslow S; Leandersson K; Edsjö A; Larsson C
    Breast Cancer Res; 2015 Feb; 17(1):23. PubMed ID: 25848820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward the precision breast cancer survival prediction utilizing combined whole genome-wide expression and somatic mutation analysis.
    Zhang Y; Yang W; Li D; Yang JY; Guan R; Yang MQ
    BMC Med Genomics; 2018 Nov; 11(Suppl 5):104. PubMed ID: 30454048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A clinical prognostic prediction of lymph node-negative breast cancer by gene expression profiles.
    Jiang D; Zhao N
    J Cancer Res Clin Oncol; 2006 Sep; 132(9):579-87. PubMed ID: 16761122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of new genes associated with breast cancer progression by gene expression analysis of predefined sets of neoplastic tissues.
    Cimino D; Fuso L; Sfiligoi C; Biglia N; Ponzone R; Maggiorotto F; Russo G; Cicatiello L; Weisz A; Taverna D; Sismondi P; De Bortoli M
    Int J Cancer; 2008 Sep; 123(6):1327-38. PubMed ID: 18561318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prognostic factor analysis for breast cancer using gene expression profiles.
    Joe S; Nam H
    BMC Med Inform Decis Mak; 2016 Jul; 16 Suppl 1(Suppl 1):56. PubMed ID: 27454576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.