These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25881286)

  • 1. Evaluation of head orientation and neck muscle EMG signals as three-dimensional command sources.
    Williams MR; Kirsch RF
    J Neuroeng Rehabil; 2015 Mar; 12():25. PubMed ID: 25881286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Case study: Head orientation and neck electromyography for cursor control in persons with high cervical tetraplegia.
    Williams MR; Kirsch RF
    J Rehabil Res Dev; 2016; 53(4):519-30. PubMed ID: 27532681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of head orientation and neck muscle EMG signals as command inputs to a human-computer interface for individuals with high tetraplegia.
    Williams MR; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2008 Oct; 16(5):485-96. PubMed ID: 18990652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of command sources for a high tetraplegia neural prosthesis.
    Williams M; Kirsch R
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4803-6. PubMed ID: 17271385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration.
    Ajiboye AB; Willett FR; Young DR; Memberg WD; Murphy BA; Miller JP; Walter BL; Sweet JA; Hoyen HA; Keith MW; Peckham PH; Simeral JD; Donoghue JP; Hochberg LR; Kirsch RF
    Lancet; 2017 May; 389(10081):1821-1830. PubMed ID: 28363483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using the Motion of the Head-Neck as a Joystick for Orientation Control.
    Zhang H; Chang BC; Rue YJ; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2019 Feb; 27(2):236-243. PubMed ID: 30676970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discreet discrete commands for assistive and neuroprosthetic devices.
    Foldes ST; Taylor DM
    IEEE Trans Neural Syst Rehabil Eng; 2010 Jun; 18(3):236-44. PubMed ID: 20064765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assisted Grasping in Individuals with Tetraplegia: Improving Control through Residual Muscle Contraction and Movement.
    Fonseca L; Tigra W; Navarro B; Guiraud D; Fattal C; Bó A; Fachin-Martins E; Leynaert V; Gélis A; Azevedo-Coste C
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31635286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Widespread presaccadic recruitment of neck muscles by stimulation of the primate frontal eye fields.
    Elsley JK; Nagy B; Cushing SL; Corneil BD
    J Neurophysiol; 2007 Sep; 98(3):1333-54. PubMed ID: 17625064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel approach for electromyography-controlled prostheses based on facial action.
    Zhang X; Li R; Li H; Lu Z; Hu Y; Alhassan AB
    Med Biol Eng Comput; 2020 Nov; 58(11):2685-2698. PubMed ID: 32862364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time evaluation of a noninvasive neuroprosthetic interface for control of reach.
    Corbett EA; Körding KP; Perreault EJ
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):674-83. PubMed ID: 23529107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-validated models of the relationships between neck muscle electromyography and three-dimensional head kinematics during gaze behavior.
    Farshadmanesh F; Byrne P; Keith GP; Wang H; Corneil BD; Crawford JD
    J Neurophysiol; 2012 Jan; 107(2):573-90. PubMed ID: 21994269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the usability of intramuscular EMG for prosthetic control: a Fitts' Law approach.
    Kamavuako EN; Scheme EJ; Englehart KB
    J Electromyogr Kinesiol; 2014 Oct; 24(5):770-7. PubMed ID: 25048642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships between neck muscle electromyography and three-dimensional head kinematics during centrally induced torsional head perturbations.
    Farshadmanesh F; Byrne P; Wang H; Corneil BD; Crawford JD
    J Neurophysiol; 2012 Dec; 108(11):2867-83. PubMed ID: 22956790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of EMG, force and joystick as control interfaces for active arm supports.
    Lobo-Prat J; Keemink AQ; Stienen AH; Schouten AC; Veltink PH; Koopman BF
    J Neuroeng Rehabil; 2014 Apr; 11():68. PubMed ID: 24746015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel EMG Interface for Individuals With Tetraplegia to Pilot Robot Hand Grasping.
    Tigra W; Navarro B; Cherubini A; Gorron X; Gelis A; Fattal C; Guiraud D; Azevedo Coste C
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):291-298. PubMed ID: 28113511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eye position modulates the electromyographic responses of neck muscles to electrical stimulation of the superior colliculus in the alert cat.
    Hadjidimitrakis K; Moschovakis AK; Dalezios Y; Grantyn A
    Exp Brain Res; 2007 May; 179(1):1-16. PubMed ID: 17091287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attenuation of human neck muscle activity following repeated imposed trunk-forward linear acceleration.
    Blouin JS; Descarreaux M; Bélanger-Gravel A; Simoneau M; Teasdale N
    Exp Brain Res; 2003 Jun; 150(4):458-64. PubMed ID: 12739089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing EMG-Based Human-Machine Interfaces for Estimating Continuous, Coordinated Movements.
    Pan L; Crouch DL; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2145-2154. PubMed ID: 31478862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further evaluation of an EMG technique for assessment of the deep cervical flexor muscles.
    Falla D; Jull G; O'Leary S; Dall'Alba P
    J Electromyogr Kinesiol; 2006 Dec; 16(6):621-8. PubMed ID: 16359872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.