These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1024 related articles for article (PubMed ID: 25881343)
21. Error in estimates of tissue material properties from shear wave dispersion ultrasound vibrometry. Urban MW; Chen S; Greenleaf JF IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):748-58. PubMed ID: 19406703 [TBL] [Abstract][Full Text] [Related]
22. Modified error in constitutive equations (MECE) approach for ultrasound elastography. Ghosh S; Zou Z; Babaniyi O; Aquino W; Diaz MI; Bayat M; Fatemi M J Acoust Soc Am; 2017 Oct; 142(4):2084. PubMed ID: 29092577 [TBL] [Abstract][Full Text] [Related]
23. Bias observed in time-of-flight shear wave speed measurements using radiation force of a focused ultrasound beam. Zhao H; Song P; Urban MW; Kinnick RR; Yin M; Greenleaf JF; Chen S Ultrasound Med Biol; 2011 Nov; 37(11):1884-92. PubMed ID: 21924817 [TBL] [Abstract][Full Text] [Related]
24. Improvement of Shear Wave Motion Detection Using Harmonic Imaging in Healthy Human Liver. Amador C; Song P; Meixner DD; Chen S; Urban MW Ultrasound Med Biol; 2016 May; 42(5):1031-41. PubMed ID: 26803391 [TBL] [Abstract][Full Text] [Related]
25. Estimating the viscoelastic modulus of a thrombus using an ultrasonic shear-wave approach. Huang CC; Chen PY; Shih CC Med Phys; 2013 Apr; 40(4):042901. PubMed ID: 23556923 [TBL] [Abstract][Full Text] [Related]
26. Analyzing the Impact of Increasing Mechanical Index and Energy Deposition on Shear Wave Speed Reconstruction in Human Liver. Deng Y; Palmeri ML; Rouze NC; Rosenzweig SJ; Abdelmalek MF; Nightingale KR Ultrasound Med Biol; 2015 Jul; 41(7):1948-57. PubMed ID: 25896024 [TBL] [Abstract][Full Text] [Related]
27. Assessment of viscous and elastic properties of sub-wavelength layered soft tissues using shear wave spectroscopy: theoretical framework and in vitro experimental validation. Nguyen TM; Couade M; Bercoff J; Tanter M IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2305-15. PubMed ID: 22083764 [TBL] [Abstract][Full Text] [Related]
28. Diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses: determination of the most discriminatory parameter. Au FW; Ghai S; Moshonov H; Kahn H; Brennan C; Dua H; Crystal P AJR Am J Roentgenol; 2014 Sep; 203(3):W328-36. PubMed ID: 25148191 [TBL] [Abstract][Full Text] [Related]
29. Generation of remote adaptive torsional shear waves with an octagonal phased array to enhance displacements and reduce variability of shear wave speeds: comparison with quasi-plane shear wavefronts. Ouared A; Montagnon E; Cloutier G Phys Med Biol; 2015 Oct; 60(20):8161-85. PubMed ID: 26439616 [TBL] [Abstract][Full Text] [Related]
30. Measurement of quantitative viscoelasticity of bovine corneas based on lamb wave dispersion properties. Zhang X; Yin Y; Guo Y; Fan N; Lin H; Liu F; Diao X; Dong C; Chen X; Wang T; Chen S Ultrasound Med Biol; 2015 May; 41(5):1461-72. PubMed ID: 25638310 [TBL] [Abstract][Full Text] [Related]
31. Evaluating the Improvement in Shear Wave Speed Image Quality Using Multidimensional Directional Filters in the Presence of Reflection Artifacts. Lipman SL; Rouze NC; Palmeri ML; Nightingale KR IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Aug; 63(8):1049-1063. PubMed ID: 28458448 [TBL] [Abstract][Full Text] [Related]
32. Fast Local Phase Velocity-Based Imaging: Shear Wave Particle Velocity and Displacement Motion Study. Kijanka P; Urban MW IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar; 67(3):526-537. PubMed ID: 31634830 [TBL] [Abstract][Full Text] [Related]
33. Comb-push ultrasound shear elastography of breast masses: initial results show promise. Denis M; Mehrmohammadi M; Song P; Meixner DD; Fazzio RT; Pruthi S; Whaley DH; Chen S; Fatemi M; Alizad A PLoS One; 2015; 10(3):e0119398. PubMed ID: 25774978 [TBL] [Abstract][Full Text] [Related]
34. Local Phase Velocity Based Imaging: A New Technique Used for Ultrasound Shear Wave Elastography. Kijanka P; Urban MW IEEE Trans Med Imaging; 2019 Apr; 38(4):894-908. PubMed ID: 30296217 [TBL] [Abstract][Full Text] [Related]
36. Modeling shear waves through a viscoelastic medium induced by acoustic radiation force. Lee KH; Szajewski BA; Hah Z; Parker KJ; Maniatty AM Int J Numer Method Biomed Eng; 2012; 28(6-7):678-96. PubMed ID: 25364845 [TBL] [Abstract][Full Text] [Related]
37. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate. Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592 [TBL] [Abstract][Full Text] [Related]
38. A Scholte wave approach for ultrasonic surface acoustic wave elastography. Liu J; Leer J; Aglayomov SR; Emelianov SY Med Phys; 2023 Jul; 50(7):4138-4150. PubMed ID: 36971512 [TBL] [Abstract][Full Text] [Related]
39. Reduced Imaging Rate in Liver Elastometery Using Shear Wave Interference Patterns. Soozande M; Arabalibeik H; Alavian SM Stud Health Technol Inform; 2016; 220():390-5. PubMed ID: 27046611 [TBL] [Abstract][Full Text] [Related]