These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25881350)

  • 1. Rayleigh surface acoustic wave as an efficient heating system for biological reactions: investigation of microdroplet temperature uniformity.
    Roux-Marchand T; Beyssen D; Sarry F; Elmazria O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Apr; 62(4):729-35. PubMed ID: 25881350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic wave based MEMS devices for biosensing applications.
    Voiculescu I; Nordin AN
    Biosens Bioelectron; 2012 Mar; 33(1):1-9. PubMed ID: 22310157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment.
    Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature field regulation of a droplet using an acoustothermal heater.
    Li L; Wu E; Jia K; Yang K
    Lab Chip; 2021 Aug; 21(16):3184-3194. PubMed ID: 34195725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices.
    Wiklund M; Green R; Ohlin M
    Lab Chip; 2012 Jul; 12(14):2438-51. PubMed ID: 22688253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics.
    Chen C; Zhang SP; Mao Z; Nama N; Gu Y; Huang PH; Jing Y; Guo X; Costanzo F; Huang TJ
    Lab Chip; 2018 Dec; 18(23):3645-3654. PubMed ID: 30361727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated active mixing and biosensing using surface acoustic waves (SAW) and surface plasmon resonance (SPR) on a common substrate.
    Renaudin A; Chabot V; Grondin E; Aimez V; Charette PG
    Lab Chip; 2010 Jan; 10(1):111-5. PubMed ID: 20024058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear hydrodynamic effects induced by Rayleigh surface acoustic wave in sessile droplets.
    Alghane M; Chen BX; Fu YQ; Li Y; Desmulliez MP; Mohammed MI; Walton AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056304. PubMed ID: 23214873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized acoustic biochip integrated with microfluidics for biomarkers detection in molecular diagnostics.
    Papadakis G; Friedt JM; Eck M; Rabus D; Jobst G; Gizeli E
    Biomed Microdevices; 2017 Sep; 19(3):16. PubMed ID: 28357652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ characterization of microdroplet interfacial properties in digital microfluidic systems.
    Ahmadi A; Devlin KD; Najjaran H; Holzman JF; Hoorfar M
    Lab Chip; 2010 Jun; 10(11):1429-35. PubMed ID: 20480107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerosol droplet optical trap loading using surface acoustic wave nebulization.
    Anand S; Nylk J; Neale SL; Dodds C; Grant S; Ismail MH; Reboud J; Cooper JM; McGloin D
    Opt Express; 2013 Dec; 21(25):30148-55. PubMed ID: 24514593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments.
    Fu YQ; Pang HF; Torun H; Tao R; McHale G; Reboud J; Tao K; Zhou J; Luo J; Gibson D; Luo J; Hu P
    Lab Chip; 2021 Jan; 21(2):254-271. PubMed ID: 33337457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of a surface acoustic wave biosensor in a microfluidic polymer chip.
    Länge K; Blaess G; Voigt A; Götzen R; Rapp M
    Biosens Bioelectron; 2006 Aug; 22(2):227-32. PubMed ID: 16458497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.
    Collins DJ; Ma Z; Han J; Ai Y
    Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustophoresis of disk-shaped microparticles: A numerical and experimental study of acoustic radiation forces and torques.
    Garbin A; Leibacher I; Hahn P; Le Ferrand H; Studart A; Dual J
    J Acoust Soc Am; 2015 Nov; 138(5):2759-69. PubMed ID: 26627752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation.
    Rajapaksa A; Qi A; Yeo LY; Coppel R; Friend JR
    Lab Chip; 2014 Jun; 14(11):1858-65. PubMed ID: 24740643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly sensitive and label free biosensing platform for wireless sensor node system.
    Kim SG; Lee HJ; Lee JH; Jung HI; Yook JG
    Biosens Bioelectron; 2013 Dec; 50():362-7. PubMed ID: 23891799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A surface-acoustic-wave-based cantilever bio-sensor.
    De Simoni G; Signore G; Agostini M; Beltram F; Piazza V
    Biosens Bioelectron; 2015 Jun; 68():570-576. PubMed ID: 25643594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-heating study of bulk acoustic wave resonators under high RF power.
    Ivira B; Fillit RY; Ndagijimana F; Benech P; Parat G; Ancey P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):139-47. PubMed ID: 18334320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Theoretical Study of Surface Mode Propagation with a Guiding Layer of GaN/Sapphire Hetero-Structure in Liquid Medium.
    Mohd Razip Wee MF; Jaafar MM; Faiz MS; Dee CF; Yeop Majlis B
    Biosensors (Basel); 2018 Dec; 8(4):. PubMed ID: 30563159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.