These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 25881356)

  • 1. Controlled drug release and hydrolysis mechanism of polymer-magnetic nanoparticle composite.
    Yang F; Zhang X; Song L; Cui H; Myers JN; Bai T; Zhou Y; Chen Z; Gu N
    ACS Appl Mater Interfaces; 2015 May; 7(18):9410-9. PubMed ID: 25881356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Polymeric Prodrug Paclitaxel-Poly(lactic acid)-b-Polyisobutylene and Its Application in Coatings of a Drug Eluting Stent.
    Ren K; Zhang M; He J; Wu Y; Ni P
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11263-71. PubMed ID: 25955234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(lactic acid)/chitosan hybrid nanoparticles for controlled release of anticancer drug.
    Wang W; Chen S; Zhang L; Wu X; Wang J; Chen JF; Le Y
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():514-20. PubMed ID: 25492016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modified PLA nano in situ gel: a potential ophthalmic drug delivery system.
    Nagarwal RC; Kumar R; Dhanawat M; Pandit JK
    Colloids Surf B Biointerfaces; 2011 Aug; 86(1):28-34. PubMed ID: 21497491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Obtaining of new magnetic nanocomposites based on modified polysaccharide.
    Tudorachi N; Chiriac A
    Carbohydr Polym; 2013 Oct; 98(1):451-9. PubMed ID: 23987367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active targeting behaviors of biotinylated pluronic/poly(lactic acid) nanoparticles in vitro through three-step biotin-avidin interaction.
    Xiong XY; Gong YC; Li ZL; Li YP; Guo L
    J Biomater Sci Polym Ed; 2011; 22(12):1607-19. PubMed ID: 20699057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled drug release through regulated biodegradation of poly(lactic acid) using inorganic salts.
    Kumar S; Singh S; Senapati S; Singh AP; Ray B; Maiti P
    Int J Biol Macromol; 2017 Nov; 104(Pt A):487-497. PubMed ID: 28624369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Preparation and release efficiency of polylactic acid nanoparticle].
    Huang KH; Zhu ZH; Liu JH; Chen QK; Liu XY; Chang J
    Ai Zheng; 2005 Aug; 24(8):1023-6. PubMed ID: 16086887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional biodegradable polymer nanoparticles with uniform sizes: generation and in vitro anti-melanoma activity.
    Liang R; Wang J; Wu X; Dong L; Deng R; Wang K; Sullivan M; Liu S; Wu M; Tao J; Yang X; Zhu J
    Nanotechnology; 2013 Nov; 24(45):455302. PubMed ID: 24145641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(lactic acid) (PLA) based nanocomposites--a novel way of drug-releasing.
    Chen C; Lv G; Pan C; Song M; Wu C; Guo D; Wang X; Chen B; Gu Z
    Biomed Mater; 2007 Dec; 2(4):L1-4. PubMed ID: 18458473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved antifungal activity of itraconazole-loaded PEG/PLA nanoparticles.
    Essa S; Louhichi F; Raymond M; Hildgen P
    J Microencapsul; 2013; 30(3):205-17. PubMed ID: 22894166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable composites from sugar beet pulp and poly(lactic acid).
    Liu L; Fishman ML; Hicks KB; Liu CK
    J Agric Food Chem; 2005 Nov; 53(23):9017-22. PubMed ID: 16277397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires.
    Li X; Chu CL; Liu L; Liu XK; Bai J; Guo C; Xue F; Lin PH; Chu PK
    Biomaterials; 2015 May; 49():135-44. PubMed ID: 25725562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated weathering-induced degradation of poly(lactic acid) fiber studied by near-infrared (NIR) hyperspectral imaging.
    Shinzawa H; Nishida M; Tanaka T; Kanematsu W
    Appl Spectrosc; 2012 Apr; 66(4):470-4. PubMed ID: 22449331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micropatterning of covalently attached biotin on poly(lactic acid) film surfaces.
    Rasal RM; Hirt DE
    Macromol Biosci; 2009 Oct; 9(10):989-96. PubMed ID: 19593782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of physicochemical factors on the release kinetics of hydrophilic drugs from poly(L-lactic acid) (L-PLA) pellets.
    Kader A; Jalil R
    Drug Dev Ind Pharm; 1998 Jun; 24(6):535-9. PubMed ID: 9876619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the degradation of polylactic acid polymer in a solid substrate environment.
    Agarwal M; Koelling KW; Chalmers JJ
    Biotechnol Prog; 1998; 14(3):517-26. PubMed ID: 9622536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of zwitterionic phospholipid polymer-coated poly(lactic acid) nanoparticles.
    Bao LL; Huang HQ; Zhao J; Nakashima K; Gong YK
    J Biomater Sci Polym Ed; 2014; 25(14-15):1703-16. PubMed ID: 25183528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research progresses on degradation mechanism in vivo and medical applications of polylactic acid].
    Liu JW; Zhao Q; Wan CX
    Space Med Med Eng (Beijing); 2001 Aug; 14(4):308-12. PubMed ID: 11681349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticles of poly(lactide)/vitamin E TPGS copolymer for cancer chemotherapy: synthesis, formulation, characterization and in vitro drug release.
    Zhang Z; Feng SS
    Biomaterials; 2006 Jan; 27(2):262-70. PubMed ID: 16024075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.