These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 25881563)

  • 1. Selective nickel-catalyzed conversion of model and lignin-derived phenolic compounds to cyclohexanone-based polymer building blocks.
    Schutyser W; Van den Bosch S; Dijkmans J; Turner S; Meledina M; Van Tendeloo G; Debecker DP; Sels BF
    ChemSusChem; 2015 May; 8(10):1805-18. PubMed ID: 25881563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts.
    Zhang X; Zhang Q; Wang T; Ma L; Yu Y; Chen L
    Bioresour Technol; 2013 Apr; 134():73-80. PubMed ID: 23500562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodeoxygenation of Guaiacol over Ceria-Zirconia Catalysts.
    Schimming SM; LaMont OD; König M; Rogers AK; D'Amico AD; Yung MM; Sievers C
    ChemSusChem; 2015 Jun; 8(12):2073-83. PubMed ID: 26036450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Ceria Addition to Na
    Yeardley A; Bagnato G; Sanna A
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33562554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of phenol via wet-air oxidation over CuO/CeO2-ZrO2 nanocatalyst synthesized employing ultrasound energy: physicochemical characterization and catalytic performance.
    Parvas M; Haghighi M; Allahyari S
    Environ Technol; 2014; 35(9-12):1140-9. PubMed ID: 24701909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ generation of Ni nanoparticles from metal-organic framework precursors and their use for biomass hydrodeoxygenation.
    Čelič TB; Grilc M; Likozar B; Tušar NN
    ChemSusChem; 2015 May; 8(10):1703-10. PubMed ID: 25755008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient and controllable alcoholysis of Kraft lignin catalyzed by porous zeolite-supported nickel-copper catalyst.
    Kong L; Liu C; Gao J; Wang Y; Dai L
    Bioresour Technol; 2019 Mar; 276():310-317. PubMed ID: 30641329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic conversion of nonfood woody biomass solids to organic liquids.
    Barta K; Ford PC
    Acc Chem Res; 2014 May; 47(5):1503-12. PubMed ID: 24745655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective production of phenolic monomer via catalytic depolymerization of lignin over cobalt-nickel-zirconium dioxide catalyst.
    Biswas B; Sakhakarmy M; Rahman T; Jahromi H; Adhikari S; Krishna BB; Bhaskar T; Baltrusaitis J; Eisa M; Kouzehkanan SMT; Oh TS
    Bioresour Technol; 2024 Apr; 398():130517. PubMed ID: 38437961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Low-temperature catalytic reduction of NO over Fe-MnOx-CeO2/ZrO2 catalyst].
    Liu R; Yang ZQ
    Huan Jing Ke Xue; 2012 Jun; 33(6):1964-70. PubMed ID: 22946183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts.
    Song Q; Wang F; Xu J
    Chem Commun (Camb); 2012 Jul; 48(56):7019-21. PubMed ID: 22523746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of methanol in controlling defunctionalization of the propyl side chain of phenolics from catalytic upstream biorefining.
    Ferrini P; Chesi C; Parkin N; Rinaldi R
    Faraday Discuss; 2017 Sep; 202():403-413. PubMed ID: 28660970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic conversion of lignin pyrolysis model compound- guaiacol and its kinetic model including coke formation.
    Zhang H; Wang Y; Shao S; Xiao R
    Sci Rep; 2016 Nov; 6():37513. PubMed ID: 27869228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of Ni N-heterocyclic carbene catalyst for C-O bond hydrogenolysis of diphenyl ether: a density functional study.
    Sawatlon B; Wititsuwannakul T; Tantirungrotechai Y; Surawatanawong P
    Dalton Trans; 2014 Dec; 43(48):18123-33. PubMed ID: 25355042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knocking on wood: base metal complexes as catalysts for selective oxidation of lignin models and extracts.
    Hanson SK; Baker RT
    Acc Chem Res; 2015 Jul; 48(7):2037-48. PubMed ID: 26151603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Catalytic wet air oxidation of phenol with Ru/ZrO2-CeO2 catalyst].
    Wang JB; Zhu WP; Wang W; Yang SX
    Huan Jing Ke Xue; 2007 Jul; 28(7):1460-5. PubMed ID: 17891952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Yield Production of Natural Phenolic Alcohols from Woody Biomass Using a Nickel-Based Catalyst.
    Chen J; Lu F; Si X; Nie X; Chen J; Lu R; Xu J
    ChemSusChem; 2016 Dec; 9(23):3353-3360. PubMed ID: 27860423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of aniline by catalytic wet air oxidation: comparative study over CuO/CeO2 and NiO/Al2O3.
    Ersöz G; Atalay S
    J Environ Manage; 2012 Dec; 113():244-50. PubMed ID: 23041516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An assessment of the suitable operating conditions for the CeO2/gamma-Al2O3 catalyzed wet air oxidation of phenol.
    Chang L; Chen IP; Lin SS
    Chemosphere; 2005 Jan; 58(4):485-92. PubMed ID: 15620740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent effects on the hydrogenolysis of diphenyl ether with Raney nickel and their implications for the conversion of lignin.
    Wang X; Rinaldi R
    ChemSusChem; 2012 Aug; 5(8):1455-66. PubMed ID: 22549827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.