These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 25881610)

  • 1. Calcium phosphate scaffolds combined with bone morphogenetic proteins or mesenchymal stem cells in bone tissue engineering.
    Sun H; Yang HL
    Chin Med J (Engl); 2015 Apr; 128(8):1121-7. PubMed ID: 25881610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macrochanneled bioactive ceramic scaffolds in combination with collagen hydrogel: a new tool for bone tissue engineering.
    Yu HS; Jin GZ; Won JE; Wall I; Kim HW
    J Biomed Mater Res A; 2012 Sep; 100(9):2431-40. PubMed ID: 22566478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the combined effect of bone morphogenetic protein 6 and calcium phosphate on bone formation capacity of periosteum derived cells-based tissue engineering constructs.
    Ji W; Kerckhofs G; Geeroms C; Marechal M; Geris L; Luyten FP
    Acta Biomater; 2018 Oct; 80():97-107. PubMed ID: 30267882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vascularization of repaired limb bone defects using chitosan-β-tricalcium phosphate composite as a tissue engineering bone scaffold.
    Yang L; Wang Q; Peng L; Yue H; Zhang Z
    Mol Med Rep; 2015 Aug; 12(2):2343-7. PubMed ID: 25902181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.
    Lee GS; Park JH; Shin US; Kim HW
    Acta Biomater; 2011 Aug; 7(8):3178-86. PubMed ID: 21539944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings.
    Martins AM; Pham QP; Malafaya PB; Raphael RM; Kasper FK; Reis RL; Mikos AG
    Tissue Eng Part A; 2009 Aug; 15(8):1953-63. PubMed ID: 19327018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of serum-derived albumin scaffold and canine adipose tissue-derived mesenchymal stem cells on osteogenesis in canine segmental bone defect model.
    Yoon D; Kang BJ; Kim Y; Lee SH; Rhew D; Kim WH; Kweon OK
    J Vet Sci; 2015; 16(4):397-404. PubMed ID: 26119162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering.
    Zhou C; Ye X; Fan Y; Ma L; Tan Y; Qing F; Zhang X
    Biofabrication; 2014 Sep; 6(3):035013. PubMed ID: 24873777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering.
    Guo H; Su J; Wei J; Kong H; Liu C
    Acta Biomater; 2009 Jan; 5(1):268-78. PubMed ID: 18722167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The combined mechanism of bone morphogenetic protein- and calcium phosphate-induced skeletal tissue formation by human periosteum derived cells.
    Bolander J; Ji W; Geris L; Bloemen V; Chai YC; Schrooten J; Luyten FP
    Eur Cell Mater; 2016 Jan; 31():11-25. PubMed ID: 26728496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair.
    Wagoner Johnson AJ; Herschler BA
    Acta Biomater; 2011 Jan; 7(1):16-30. PubMed ID: 20655397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating apatite formation and osteogenic activity of electrospun composites for bone tissue engineering.
    Patlolla A; Arinzeh TL
    Biotechnol Bioeng; 2014 May; 111(5):1000-17. PubMed ID: 24264603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.
    Özdal-Kurt F; Tuğlu I; Vatansever HS; Tong S; Deliloğlu-Gürhan SI
    Biotech Histochem; 2015; 90(7):516-28. PubMed ID: 25994048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y
    Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of bone formation by BMP-7 transduced MSCs on biomimetic nano-hydroxyapatite/polyamide composite scaffolds in repair of mandibular defects.
    Li J; Li Y; Ma S; Gao Y; Zuo Y; Hu J
    J Biomed Mater Res A; 2010 Dec; 95(4):973-81. PubMed ID: 20845497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.
    Ye X; Yin X; Yang D; Tan J; Liu G
    Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells.
    Wang L; Fan H; Zhang ZY; Lou AJ; Pei GX; Jiang S; Mu TW; Qin JJ; Chen SY; Jin D
    Biomaterials; 2010 Dec; 31(36):9452-61. PubMed ID: 20869769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative in vitro study of calcium phosphate ceramics for their potency as scaffolds for tissue engineering.
    Wójtowicz J; Leszczyńska J; Chróścicka A; Slósarczyk A; Paszkiewicz Z; Zima A; Rożniatowski K; Jeleń P; Lewandowska-Szumieł M
    Biomed Mater Eng; 2014; 24(3):1609-23. PubMed ID: 24840199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics.
    Tang Z; Wang Z; Qing F; Ni Y; Fan Y; Tan Y; Zhang X
    J Biomed Mater Res A; 2015 Mar; 103(3):1001-10. PubMed ID: 24889783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone morphogenetic protein-2 in biodegradable gelatin and β-tricalcium phosphate sponges enhances the in vivo bone-forming capability of bone marrow mesenchymal stem cells.
    Tadokoro M; Matsushima A; Kotobuki N; Hirose M; Kimura Y; Tabata Y; Hattori K; Ohgushi H
    J Tissue Eng Regen Med; 2012 Apr; 6(4):253-60. PubMed ID: 21548136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.