BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25881699)

  • 1. Mapping and cloning of low phosphorus tolerance genes in soybeans.
    Zhang D; Song HN; Cheng H; Yu DY
    Yi Chuan; 2015 Apr; 37(4):336-343. PubMed ID: 25881699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress.
    Zhang D; Zhang H; Chu S; Li H; Chi Y; Triebwasser-Freese D; Lv H; Yu D
    Plant Mol Biol; 2017 Jan; 93(1-2):137-150. PubMed ID: 27815671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid phosphatase gene GmHAD1 linked to low phosphorus tolerance in soybean, through fine mapping.
    Cai Z; Cheng Y; Xian P; Ma Q; Wen K; Xia Q; Zhang G; Nian H
    Theor Appl Genet; 2018 Aug; 131(8):1715-1728. PubMed ID: 29754326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Up-regulating GmETO1 improves phosphorus uptake and use efficiency by promoting root growth in soybean.
    Zhang H; Yang Y; Sun C; Liu X; Lv L; Hu Z; Yu D; Zhang D
    Plant Cell Environ; 2020 Sep; 43(9):2080-2094. PubMed ID: 32515009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis and fine mapping of phosphorus efficiency locus 1 (PE1) in soybean.
    Yang Y; Tong Y; Li X; He Y; Xu R; Liu D; Yang Q; Lv H; Liao H
    Theor Appl Genet; 2019 Oct; 132(10):2847-2858. PubMed ID: 31317236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic mapping high protein content QTL from soybean 'Nanxiadou 25' and candidate gene analysis.
    Wang J; Mao L; Zeng Z; Yu X; Lian J; Feng J; Yang W; An J; Wu H; Zhang M; Liu L
    BMC Plant Biol; 2021 Aug; 21(1):388. PubMed ID: 34416870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress.
    Zhang D; Song H; Cheng H; Hao D; Wang H; Kan G; Jin H; Yu D
    PLoS Genet; 2014 Jan; 10(1):e1004061. PubMed ID: 24391523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean.
    Zhang W; Liao X; Cui Y; Ma W; Zhang X; Du H; Ma Y; Ning L; Wang H; Huang F; Yang H; Kan G; Yu D
    PLoS Genet; 2019 Jan; 15(1):e1007798. PubMed ID: 30615606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research progress on identification of QTLs and functional genes involved in salt tolerance in soybean.
    Wang N; Zhao SZ; Lv MH; Xiang FN; Li S
    Yi Chuan; 2016 Nov; 38(11):992-1003. PubMed ID: 27867149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GmFtsH9 expression correlates with in vivo photosystem II function: chlorophyll a fluorescence transient analysis and eQTL mapping in soybean.
    Yin Z; Meng F; Song H; Wang X; Chao M; Zhang G; Xu X; Deng D; Yu D
    Planta; 2011 Oct; 234(4):815-27. PubMed ID: 21638036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a major quantitative trait locus underlying salt tolerance in 'Jidou 12' soybean cultivar.
    Shi X; Yan L; Yang C; Yan W; Moseley DO; Wang T; Liu B; Di R; Chen P; Zhang M
    BMC Res Notes; 2018 Feb; 11(1):95. PubMed ID: 29402302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine-mapping and characterization of qSCN18, a novel QTL controlling soybean cyst nematode resistance in PI 567516C.
    Usovsky M; Ye H; Vuong TD; Patil GB; Wan J; Zhou L; Nguyen HT
    Theor Appl Genet; 2021 Feb; 134(2):621-631. PubMed ID: 33185711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max.
    Li B; Tian L; Zhang J; Huang L; Han F; Yan S; Wang L; Zheng H; Sun J
    BMC Genomics; 2014 Dec; 15(1):1086. PubMed ID: 25494922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and fine-mapping of a genetic locus underlying soybean tolerance to SMV infections.
    Lin J; Lan Z; Hou W; Yang C; Wang D; Zhang M; Zhi H
    Plant Sci; 2020 Mar; 292():110367. PubMed ID: 32005375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QTL analysis of root traits as related to phosphorus efficiency in soybean.
    Liang Q; Cheng X; Mei M; Yan X; Liao H
    Ann Bot; 2010 Jul; 106(1):223-34. PubMed ID: 20472699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.
    Eskandari M; Cober ER; Rajcan I
    Theor Appl Genet; 2013 Jun; 126(6):1677-87. PubMed ID: 23536049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QTL architecture of vine growth habit and gibberellin oxidase gene diversity in wild soybean (Glycine soja).
    Wang R; Liu L; Kong J; Xu Z; Akhter Bhat J; Zhao T
    Sci Rep; 2019 May; 9(1):7393. PubMed ID: 31089185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative selective signature analysis and high-resolution GWAS reveal a new candidate gene controlling seed weight in soybean.
    Zhang W; Xu W; Zhang H; Liu X; Cui X; Li S; Song L; Zhu Y; Chen X; Chen H
    Theor Appl Genet; 2021 May; 134(5):1329-1341. PubMed ID: 33507340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meta-Analyses of QTLs Associated with Protein and Oil Contents and Compositions in Soybean [Glycine max (L.) Merr.] Seed.
    Van K; McHale LK
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28587169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of GmSWEET39 for oil and protein improvement in soybean.
    Zhang H; Goettel W; Song Q; Jiang H; Hu Z; Wang ML; An YC
    PLoS Genet; 2020 Nov; 16(11):e1009114. PubMed ID: 33175845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.