These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 25881957)
41. Preparation and antibacterial activity evaluation of rifampicin-loaded poly lactide-co-glycolide nanoparticles. Esmaeili F; Hosseini-Nasr M; Rad-Malekshahi M; Samadi N; Atyabi F; Dinarvand R Nanomedicine; 2007 Jun; 3(2):161-7. PubMed ID: 17468055 [TBL] [Abstract][Full Text] [Related]
42. Study of 5-Fluorouracil Loaded Chitosan Nanoparticles for Treatment of Skin Cancer. Patel G; Yadav BKN Recent Pat Nanotechnol; 2020; 14(3):210-224. PubMed ID: 31267881 [TBL] [Abstract][Full Text] [Related]
43. Intermolecular interactions between salmon calcitonin, hyaluronate, and chitosan and their impact on the process of formation and properties of peptide-loaded nanoparticles. Umerska A; Corrigan OI; Tajber L Int J Pharm; 2014 Dec; 477(1-2):102-12. PubMed ID: 25447822 [TBL] [Abstract][Full Text] [Related]
44. Formulation and corneal permeation of ketorolac tromethamine-loaded chitosan nanoparticles. Fathalla ZM; Khaled KA; Hussein AK; Alany RG; Vangala A Drug Dev Ind Pharm; 2016; 42(4):514-24. PubMed ID: 26407208 [TBL] [Abstract][Full Text] [Related]
45. Controlled release of an endostatin peptide using chitosan nanoparticles. Ebrahimi Samani S; Seraj Z; Naderimanesh H; Khajeh K; Esmaeili Rastaghi AR; Droudi T; Kolivand P; Kazemi H; Asghari SM Chem Biol Drug Des; 2017 Sep; 90(3):417-424. PubMed ID: 28165672 [TBL] [Abstract][Full Text] [Related]
47. In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles. Esmaeili A; Asgari A Int J Biol Macromol; 2015 Nov; 81():283-90. PubMed ID: 26257380 [TBL] [Abstract][Full Text] [Related]
48. Development of azithromycin-PLGA nanoparticles: physicochemical characterization and antibacterial effect against Salmonella typhi. Mohammadi G; Valizadeh H; Barzegar-Jalali M; Lotfipour F; Adibkia K; Milani M; Azhdarzadeh M; Kiafar F; Nokhodchi A Colloids Surf B Biointerfaces; 2010 Oct; 80(1):34-9. PubMed ID: 20558048 [TBL] [Abstract][Full Text] [Related]
49. Polymeric nanoparticles based on chitooligosaccharide as drug carriers for co-delivery of all-trans-retinoic acid and paclitaxel. Zhang J; Han J; Zhang X; Jiang J; Xu M; Zhang D; Han J Carbohydr Polym; 2015 Sep; 129():25-34. PubMed ID: 26050884 [TBL] [Abstract][Full Text] [Related]
50. Fabrication of letrozole formulation using chitosan nanoparticles through ionic gelation method. Gomathi T; Sudha PN; Florence JAK; Venkatesan J; Anil S Int J Biol Macromol; 2017 Nov; 104(Pt B):1820-1832. PubMed ID: 28185930 [TBL] [Abstract][Full Text] [Related]
51. Polymeric nanoparticles-embedded organogel for roxithromycin delivery to hair follicles. Główka E; Wosicka-Frąckowiak H; Hyla K; Stefanowska J; Jastrzębska K; Klapiszewski Ł; Jesionowski T; Cal K Eur J Pharm Biopharm; 2014 Sep; 88(1):75-84. PubMed ID: 25014763 [TBL] [Abstract][Full Text] [Related]
52. The key role of the drug self-aggregation ability to obtain optimal nanocarriers based on aromatic-aromatic drug-polymer interactions. Villamizar-Sarmiento MG; Guerrero J; Moreno-Villoslada I; Oyarzun-Ampuero FA Eur J Pharm Biopharm; 2021 Sep; 166():19-29. PubMed ID: 34052430 [TBL] [Abstract][Full Text] [Related]
53. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo. Chuan X; Song Q; Lin J; Chen X; Zhang H; Dai W; He B; Wang X; Zhang Q Mol Pharm; 2014 Oct; 11(10):3656-70. PubMed ID: 25208098 [TBL] [Abstract][Full Text] [Related]
54. Encapsulation of rifampin in a polymeric layer-by-layer structure for drug delivery. Esmaeili A; Khodaei M J Biomed Mater Res A; 2018 Apr; 106(4):905-913. PubMed ID: 29143479 [TBL] [Abstract][Full Text] [Related]
55. Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. Mahmoud AA; El-Feky GS; Kamel R; Awad GE Int J Pharm; 2011 Jul; 413(1-2):229-36. PubMed ID: 21540097 [TBL] [Abstract][Full Text] [Related]
56. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Giovino C; Ayensu I; Tetteh J; Boateng JS Int J Pharm; 2012 May; 428(1-2):143-51. PubMed ID: 22405987 [TBL] [Abstract][Full Text] [Related]
57. Formulation, optimization and characterization of cationic polymeric nanoparticles of mast cell stabilizing agent using the Box-Behnken experimental design. Gajra B; Patel RR; Dalwadi C Drug Dev Ind Pharm; 2016; 42(5):747-57. PubMed ID: 26559522 [TBL] [Abstract][Full Text] [Related]
58. Formulation and Evaluation of Atorvastatin Calcium-Poly-ε-Caprolactone Nanoparticles Loaded Ocular Inserts for Sustained Release and Antiinflammatory Efficacy. Girgis GNS Curr Pharm Biotechnol; 2020; 21(15):1688-1698. PubMed ID: 32427080 [TBL] [Abstract][Full Text] [Related]
59. Optimizing indomethacin-loaded chitosan nanoparticle size, encapsulation, and release using Box-Behnken experimental design. Abul Kalam M; Khan AA; Khan S; Almalik A; Alshamsan A Int J Biol Macromol; 2016 Jun; 87():329-40. PubMed ID: 26893052 [TBL] [Abstract][Full Text] [Related]
60. Preparation of drug-loaded polymeric nanoparticles and evaluation of the antioxidant activity against lipid peroxidation. Pohlmann AR; Schaffazick SR; Creczynski-Pasa TB; Guterres SS Methods Mol Biol; 2010; 610():109-21. PubMed ID: 20013175 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]