These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 25882139)

  • 1. Potential of Proapoptotic Peptides to Induce the Formation of Giant Plasma Membrane Vesicles with Lipid Domains.
    Lauster D; Vazquez O; Schwarzer R; Seitz O; Herrmann A
    Chembiochem; 2015 Jun; 16(9):1288-92. PubMed ID: 25882139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant plasma membrane vesicles: models for understanding membrane organization.
    Levental KR; Levental I
    Curr Top Membr; 2015; 75():25-57. PubMed ID: 26015280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles.
    Baumgart T; Hammond AT; Sengupta P; Hess ST; Holowka DA; Baird BA; Webb WW
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3165-70. PubMed ID: 17360623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemagglutinin of influenza virus partitions into the nonraft domain of model membranes.
    Nikolaus J; Scolari S; Bayraktarov E; Jungnick N; Engel S; Pia Plazzo A; Stöckl M; Volkmer R; Veit M; Herrmann A
    Biophys J; 2010 Jul; 99(2):489-98. PubMed ID: 20643067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PI(4,5)P2 degradation promotes the formation of cytoskeleton-free model membrane systems.
    Keller H; Lorizate M; Schwille P
    Chemphyschem; 2009 Nov; 10(16):2805-12. PubMed ID: 19784973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CD317/tetherin is an organiser of membrane microdomains.
    Billcliff PG; Rollason R; Prior I; Owen DM; Gaus K; Banting G
    J Cell Sci; 2013 Apr; 126(Pt 7):1553-64. PubMed ID: 23378022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth Conditions and Cell Cycle Phase Modulate Phase Transition Temperatures in RBL-2H3 Derived Plasma Membrane Vesicles.
    Gray EM; Díaz-Vázquez G; Veatch SL
    PLoS One; 2015; 10(9):e0137741. PubMed ID: 26368288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of cell surface transport and lipid raft localization by the cytoplasmic tail of the influenza virus hemagglutinin.
    Scolari S; Imkeller K; Jolmes F; Veit M; Herrmann A; Schwarzer R
    Cell Microbiol; 2016 Jan; 18(1):125-36. PubMed ID: 26243691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two conserved residues are important for inducing highly ordered membrane domains by the transmembrane domain of influenza hemagglutinin.
    Ge M; Freed JH
    Biophys J; 2011 Jan; 100(1):90-7. PubMed ID: 21190660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Penetration without cells: membrane translocation of cell-penetrating peptides in the model giant plasma membrane vesicles.
    Säälik P; Niinep A; Pae J; Hansen M; Lubenets D; Langel Ü; Pooga M
    J Control Release; 2011 Jul; 153(2):117-25. PubMed ID: 21420454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acylation-mediated membrane anchoring of avian influenza virus hemagglutinin is essential for fusion pore formation and virus infectivity.
    Wagner R; Herwig A; Azzouz N; Klenk HD
    J Virol; 2005 May; 79(10):6449-58. PubMed ID: 15858028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translocation of cell-penetrating peptides across the plasma membrane is controlled by cholesterol and microenvironment created by membranous proteins.
    Pae J; Säälik P; Liivamägi L; Lubenets D; Arukuusk P; Langel Ü; Pooga M
    J Control Release; 2014 Oct; 192():103-13. PubMed ID: 25016968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid domain association of influenza virus proteins detected by dynamic fluorescence microscopy techniques.
    Veit M; Engel S; Thaa B; Scolari S; Herrmann A
    Cell Microbiol; 2013 Feb; 15(2):179-89. PubMed ID: 23057766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influenza virus assembly and budding in raft-derived microdomains: a quantitative analysis of the surface distribution of HA, NA and M2 proteins.
    Leser GP; Lamb RA
    Virology; 2005 Nov; 342(2):215-27. PubMed ID: 16249012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The formation of giant plasma membrane vesicles enable new insights into the regulation of cholesterol efflux.
    Sedgwick A; Olivia Balmert M; D'Souza-Schorey C
    Exp Cell Res; 2018 Apr; 365(2):194-207. PubMed ID: 29522754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular view of the role of fusion peptides in promoting positive membrane curvature.
    Fuhrmans M; Marrink SJ
    J Am Chem Soc; 2012 Jan; 134(3):1543-52. PubMed ID: 22191854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acylation of the influenza hemagglutinin modulates fusion activity.
    Fischer C; Schroth-Diez B; Herrmann A; Garten W; Klenk HD
    Virology; 1998 Sep; 248(2):284-94. PubMed ID: 9721237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HIV-1 Vpu's lipid raft association is dispensable for counteraction of the particle release restriction imposed by CD317/Tetherin.
    Fritz JV; Tibroni N; Keppler OT; Fackler OT
    Virology; 2012 Mar; 424(1):33-44. PubMed ID: 22222210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wash-free instant detection of giant plasma membrane vesicles.
    Okada S; Yankawa S; Saitoh H
    Anal Biochem; 2018 Sep; 557():59-61. PubMed ID: 30030992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol and M2 Rendezvous in Budding and Scission of Influenza A Virus.
    Madsen JJ; Rossman JS
    Subcell Biochem; 2023; 106():441-459. PubMed ID: 38159237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.