These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 25882139)

  • 21. Prominin-1: a distinct cholesterol-binding membrane protein and the organisation of the apical plasma membrane of epithelial cells.
    Corbeil D; Marzesco AM; Fargeas CA; Huttner WB
    Subcell Biochem; 2010; 51():399-423. PubMed ID: 20213552
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Giant Plasma Membrane Vesicles: An Experimental Tool for Probing the Effects of Drugs and Other Conditions on Membrane Domain Stability.
    Gerstle Z; Desai R; Veatch SL
    Methods Enzymol; 2018; 603():129-150. PubMed ID: 29673522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins.
    Latham T; Galarza JM
    J Virol; 2001 Jul; 75(13):6154-65. PubMed ID: 11390617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alterations of membrane curvature during influenza virus budding.
    Martyna A; Rossman J
    Biochem Soc Trans; 2014 Oct; 42(5):1425-8. PubMed ID: 25233426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single mutation effects on conformational change and membrane deformation of influenza hemagglutinin fusion peptides.
    Li J; Das P; Zhou R
    J Phys Chem B; 2010 Jul; 114(26):8799-806. PubMed ID: 20552971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell Line and Media Composition Influence the Production of Giant Plasma Membrane Vesicles.
    Doherty W; Benson S; Pepdjonovic L; Koppes AN; Koppes RA
    ACS Biomater Sci Eng; 2024 Mar; 10(3):1880-1891. PubMed ID: 38374716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative electron microscopy and fluorescence spectroscopy of the membrane distribution of influenza hemagglutinin.
    Hess ST; Kumar M; Verma A; Farrington J; Kenworthy A; Zimmerberg J
    J Cell Biol; 2005 Jun; 169(6):965-76. PubMed ID: 15967815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visualization of lipid domain-specific protein sorting in giant unilamellar vesicles.
    Stöckl M; Nikolaus J; Herrmann A
    Methods Mol Biol; 2010; 606():115-26. PubMed ID: 20013394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pore-Spanning Plasma Membranes Derived from Giant Plasma Membrane Vesicles.
    Teiwes NK; Mey I; Baumann PC; Strieker L; Unkelbach U; Steinem C
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25805-25812. PubMed ID: 34043315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dimerization of the transmembrane domain of human tetherin in membrane mimetic environments.
    Cole G; Simonetti K; Ademi I; Sharpe S
    Biochemistry; 2012 Jun; 51(25):5033-40. PubMed ID: 22667354
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on influenza haemagglutinin fusion peptide mutants generated by reverse genetics.
    Cross KJ; Wharton SA; Skehel JJ; Wiley DC; Steinhauer DA
    EMBO J; 2001 Aug; 20(16):4432-42. PubMed ID: 11500371
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Critical fluctuations in plasma membrane vesicles.
    Veatch SL; Cicuta P; Sengupta P; Honerkamp-Smith A; Holowka D; Baird B
    ACS Chem Biol; 2008 May; 3(5):287-93. PubMed ID: 18484709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human immunodeficiency virus type 1 and influenza virus exit via different membrane microdomains.
    Khurana S; Krementsov DN; de Parseval A; Elder JH; Foti M; Thali M
    J Virol; 2007 Nov; 81(22):12630-40. PubMed ID: 17855546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Palmitoylation at Cys595 is essential for PECAM-1 localisation into membrane microdomains and for efficient PECAM-1-mediated cytoprotection.
    Sardjono CT; Harbour SN; Yip JC; Paddock C; Tridandapani S; Newman PJ; Jackson DE
    Thromb Haemost; 2006 Dec; 96(6):756-66. PubMed ID: 17139370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sialic acid-mimic peptides as hemagglutinin inhibitors for anti-influenza therapy.
    Matsubara T; Onishi A; Saito T; Shimada A; Inoue H; Taki T; Nagata K; Okahata Y; Sato T
    J Med Chem; 2010 Jun; 53(11):4441-9. PubMed ID: 20476787
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane binding of pH-sensitive influenza fusion peptides. positioning, configuration, and induced leakage in a lipid vesicle model.
    Esbjörner EK; Oglecka K; Lincoln P; Gräslund A; Nordén B
    Biochemistry; 2007 Nov; 46(47):13490-504. PubMed ID: 17973492
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cholesterol-dependent phase separation in cell-derived giant plasma-membrane vesicles.
    Levental I; Byfield FJ; Chowdhury P; Gai F; Baumgart T; Janmey PA
    Biochem J; 2009 Nov; 424(2):163-7. PubMed ID: 19811449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipid raft-dependent targeting of the influenza A virus nucleoprotein to the apical plasma membrane.
    Carrasco M; Amorim MJ; Digard P
    Traffic; 2004 Dec; 5(12):979-92. PubMed ID: 15522099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How Can Giant Plasma Membrane Vesicles Serve as a Cellular Model for Controlled Transfer of Nanoparticles?
    Zartner L; Garni M; Craciun I; Einfalt T; Palivan CG
    Biomacromolecules; 2021 Jan; 22(1):106-115. PubMed ID: 32648740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of Cell-Derived Plasma Membrane Vesicles as a Nanoparticle Encapsulation and Delivery System.
    Kheradmandi M; Farnoud AM; Burdick MM
    bioRxiv; 2023 Aug; ():. PubMed ID: 37609185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.