These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 25882275)

  • 21. Identification and functional/structural analyses of large terpene synthases.
    Ueda D; Abe T; Fujihashi M; Sato T
    Methods Enzymol; 2024; 699():477-512. PubMed ID: 38942515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of Chimeric αβγ Diterpene Synthases Possessing both Type II Terpene Cyclase and Prenyltransferase Activities.
    Mitsuhashi T; Okada M; Abe I
    Chembiochem; 2017 Nov; 18(21):2104-2109. PubMed ID: 28869716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular Basis for Sesterterpene Diversity Produced by Plant Terpene Synthases.
    Chen Q; Li J; Liu Z; Mitsuhashi T; Zhang Y; Liu H; Ma Y; He J; Shinada T; Sato T; Wang Y; Liu H; Abe I; Zhang P; Wang G
    Plant Commun; 2020 Sep; 1(5):100051. PubMed ID: 33367256
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of Enzymes Involved in Sesterterpene Biosynthesis in Marine Fungi.
    Yan J; Guo J; Yuan W; Mai W; Hong K
    Methods Enzymol; 2018; 604():441-498. PubMed ID: 29779663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanistic Characterisation of the Bacterial Sesterviridene Synthase from Kitasatospora viridis.
    Xu H; Schnakenburg G; Goldfuss B; Dickschat JS
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202306429. PubMed ID: 37283082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isoprenyl diphosphate synthases: the chain length determining step in terpene biosynthesis.
    Nagel R; Schmidt A; Peters RJ
    Planta; 2019 Jan; 249(1):9-20. PubMed ID: 30467632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of three novel isoprenyl diphosphate synthases from the terpenoid rich mango fruit.
    Kulkarni R; Pandit S; Chidley H; Nagel R; Schmidt A; Gershenzon J; Pujari K; Giri A; Gupta V
    Plant Physiol Biochem; 2013 Oct; 71():121-31. PubMed ID: 23911730
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Basis for Stellatic Acid Biosynthesis: A Genome Mining Approach for Discovery of Sesterterpene Synthases.
    Matsuda Y; Mitsuhashi T; Quan Z; Abe I
    Org Lett; 2015 Sep; 17(18):4644-7. PubMed ID: 26351860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and Mechanistic Insight into Terpene Synthases that Catalyze the Irregular Non-Head-to-Tail Coupling of Prenyl Substrates.
    Kobayashi M; Kuzuyama T
    Chembiochem; 2019 Jan; 20(1):29-33. PubMed ID: 30277292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclopentane-forming di/sesterterpene synthases: widely distributed enzymes in bacteria, fungi, and plants.
    Minami A; Ozaki T; Liu C; Oikawa H
    Nat Prod Rep; 2018 Dec; 35(12):1330-1346. PubMed ID: 29855001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Biosynthetic Gene Cluster for Sestermobaraenes-Discovery of a Geranylfarnesyl Diphosphate Synthase and a Multiproduct Sesterterpene Synthase from Streptomyces mobaraensis.
    Hou A; Dickschat JS
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):19961-19965. PubMed ID: 32749032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpression of an isoprenyl diphosphate synthase in spruce leads to unexpected terpene diversion products that function in plant defense.
    Nagel R; Berasategui A; Paetz C; Gershenzon J; Schmidt A
    Plant Physiol; 2014 Feb; 164(2):555-69. PubMed ID: 24346420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular and structural basis of metabolic diversity mediated by prenyldiphosphate converting enzymes.
    Brandt W; Bräuer L; Günnewich N; Kufka J; Rausch F; Schulze D; Schulze E; Weber R; Zakharova S; Wessjohann L
    Phytochemistry; 2009; 70(15-16):1758-75. PubMed ID: 19878958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical control over the conversion between bicyclic and polycyclic terpenes by fungal bifunctional terpene synthases.
    Wang X; Wang Z; Zhu G; Jiang L; Zhang W; Huang Y; Cong Z; Zhao YL; Xu JH; Hsiang T; Zhang L; Chen Q; Liu X
    Chem Commun (Camb); 2022 Aug; 58(68):9476-9479. PubMed ID: 35912868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploration and mining of the bacterial terpenome.
    Cane DE; Ikeda H
    Acc Chem Res; 2012 Mar; 45(3):463-72. PubMed ID: 22039990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ruptenes: A Family of Terpene Analogs Give Insight into Cyclisation Mechanisms by Cascade Disruption.
    Gu B; Dickschat JS
    Angew Chem Int Ed Engl; 2023 Aug; 62(32):e202307006. PubMed ID: 37306333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution.
    Huang AC; Kautsar SA; Hong YJ; Medema MH; Bond AD; Tantillo DJ; Osbourn A
    Proc Natl Acad Sci U S A; 2017 Jul; 114(29):E6005-E6014. PubMed ID: 28673978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Non-Enzymatic Pathway with Superoxide in Intracellular Terpenoid Synthesis.
    Ueda D; Matsugane S; Okamoto W; Hashimoto M; Sato T
    Angew Chem Int Ed Engl; 2018 Aug; 57(32):10347-10351. PubMed ID: 29927025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel approaches and achievements in biosynthesis of functional isoprenoids in Escherichia coli.
    Harada H; Misawa N
    Appl Microbiol Biotechnol; 2009 Oct; 84(6):1021-31. PubMed ID: 19672590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of sesterterpene ophiobolin by a bifunctional terpene synthase in Escherichia coli.
    Yuan W; Lv S; Chen L; Zhao Y; Deng Z; Hong K
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8785-8797. PubMed ID: 31515597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.