These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 25882592)

  • 21. Detection of thermoresponsive polymer phase transition in dilute low-volume format by microscale thermophoretic depletion.
    Wolff M; Braun D; Nash MA
    Anal Chem; 2014 Jul; 86(14):6797-803. PubMed ID: 24820008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel.
    Liu W; Zhang B; Lu WW; Li X; Zhu D; De Yao K; Wang Q; Zhao C; Wang C
    Biomaterials; 2004 Jul; 25(15):3005-12. PubMed ID: 14967533
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A thermally tunable inverse opal photonic crystal for monitoring glass transition.
    Sun L; Xie Z; Xu H; Xu M; Han G; Wang C; Bai X; Gu Z
    J Nanosci Nanotechnol; 2012 Mar; 12(3):1984-7. PubMed ID: 22755009
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid.
    Wang X; Mu Z; Liu R; Pu Y; Yin L
    Food Chem; 2013 Dec; 141(4):3947-53. PubMed ID: 23993570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temperature-sensitive hydrogels by graft polymerization of chitosan and N-isopropylacrylamide for drug release.
    Spizzirri UG; Iemma F; Cirillo G; Altimari I; Puoci F; Picci N
    Pharm Dev Technol; 2013; 18(5):1026-34. PubMed ID: 22200242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photocontrolled Healable Structural Color Hydrogels.
    Chen Z; Wu J; Wang Y; Shao C; Chi J; Li Z; Wang X; Zhao Y
    Small; 2019 Sep; 15(37):e1903104. PubMed ID: 31348607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A visual and organic vapor sensitive photonic crystal sensor consisting of polymer-infiltrated SiO2 inverse opal.
    Zhang Y; Qiu J; Hu R; Li P; Gao L; Heng L; Tang BZ; Jiang L
    Phys Chem Chem Phys; 2015 Apr; 17(15):9651-8. PubMed ID: 25777537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of a crown ether comonomer on the temperature-induced phase transition of poly(N-isopropylacrylamide) hydrogels.
    Kosik K; Wilk E; Geissler E; László K
    J Phys Chem B; 2008 Jan; 112(4):1065-70. PubMed ID: 18181595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Confined stimuli-responsive polymer gel in inverse opal polymer membrane for colorimetric glucose sensor.
    Honda M; Kataoka K; Seki T; Takeoka Y
    Langmuir; 2009 Jul; 25(14):8349-56. PubMed ID: 19527038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure.
    Kubo S; Gu ZZ; Takahashi K; Fujishima A; Segawa H; Sato O
    J Am Chem Soc; 2004 Jul; 126(26):8314-9. PubMed ID: 15225074
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent trends in pH/thermo-responsive self-assembling hydrogels: from polyions to peptide-based polymeric gelators.
    Chassenieux C; Tsitsilianis C
    Soft Matter; 2016 Feb; 12(5):1344-59. PubMed ID: 26781351
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels.
    Hu J; Zhang G; Liu S
    Chem Soc Rev; 2012 Sep; 41(18):5933-49. PubMed ID: 22695880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transformation of hydrogel-based inverse opal photonic sensors from FCC to L1(1) during swelling.
    Lee YJ; Heitzman CE; Frei WR; Johnson HT; Braun PV
    J Phys Chem B; 2006 Oct; 110(39):19300-6. PubMed ID: 17004784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lessons from nature: stimuli-responsive polymers and their biomedical applications.
    Jeong B; Gutowska A
    Trends Biotechnol; 2002 Jul; 20(7):305-11. PubMed ID: 12062976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inverse Opal Photonic Crystals as an Optofluidic Platform for Fast Analysis of Hydrocarbon Mixtures.
    Xu Q; Mahpeykar SM; Burgess IB; Wang X
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20120-20127. PubMed ID: 29763285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescence Sensing of Formaldehyde and Acetaldehyde Based on Responsive Inverse Opal Photonic Crystals: A Multiple-Application Detection Platform.
    Lu X; Li R; Han B; Ma H; Hou X; Kang Y; Zhang Y; Wang JJ
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13792-13801. PubMed ID: 33705107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Supramolecular polymeric materials via cyclodextrin-guest interactions.
    Harada A; Takashima Y; Nakahata M
    Acc Chem Res; 2014 Jul; 47(7):2128-40. PubMed ID: 24911321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inverse opal photonic crystal of chalcogenide glass by solution processing.
    Kohoutek T; Orava J; Sawada T; Fudouzi H
    J Colloid Interface Sci; 2011 Jan; 353(2):454-8. PubMed ID: 21035816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimuli-responsive 2D polyelectrolyte photonic crystals for optically encoded pH sensing.
    Li C; Lotsch BV
    Chem Commun (Camb); 2012 Jun; 48(49):6169-71. PubMed ID: 22590710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Independent multifunctional detection by wettability controlled inverse opal hydrogels.
    Hong W; Li H; Hu X; Zhao B; Zhang F; Zhang D
    Chem Commun (Camb); 2012 May; 48(38):4609-11. PubMed ID: 22472770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.