These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 25883143)
1. Survey of protein-DNA interactions in Aspergillus oryzae on a genomic scale. Wang C; Lv Y; Wang B; Yin C; Lin Y; Pan L Nucleic Acids Res; 2015 May; 43(9):4429-46. PubMed ID: 25883143 [TBL] [Abstract][Full Text] [Related]
2. Construction of transcript regulation mechanism prediction models based on binding motif environment of transcription factor AoXlnR in Oka H; Kojima T; Kato R; Ihara K; Nakano H J Bioinform Comput Biol; 2024 Jun; 22(3):2450017. PubMed ID: 39051143 [TBL] [Abstract][Full Text] [Related]
3. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast. Tsai ZT; Shiu SH; Tsai HK PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518 [TBL] [Abstract][Full Text] [Related]
4. High-resolution mapping of in vivo genomic transcription factor binding sites using in situ DNase I footprinting and ChIP-seq. Chumsakul O; Nakamura K; Kurata T; Sakamoto T; Hobman JL; Ogasawara N; Oshima T; Ishikawa S DNA Res; 2013 Aug; 20(4):325-38. PubMed ID: 23580539 [TBL] [Abstract][Full Text] [Related]
5. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data. Kähärä J; Lähdesmäki H Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350 [TBL] [Abstract][Full Text] [Related]
7. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model. Oliver P; Peralta-Gil M; Tabche ML; Merino E BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672 [TBL] [Abstract][Full Text] [Related]
8. Analysis of genome-wide coexpression and coevolution of Aspergillus oryzae and Aspergillus niger. Vongsangnak W; Nookaew I; Salazar M; Nielsen J OMICS; 2010 Apr; 14(2):165-75. PubMed ID: 20337533 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive investigation of the gene expression system regulated by an Aspergillus oryzae transcription factor XlnR using integrated mining of gSELEX-Seq and microarray data. Oka H; Kojima T; Ihara K; Kobayashi T; Nakano H BMC Genomics; 2019 Jan; 20(1):16. PubMed ID: 30621576 [TBL] [Abstract][Full Text] [Related]
10. Profiling of chromatin accessibility identifies transcription factor binding sites across the genome of Aspergillus species. Huang L; Li X; Dong L; Wang B; Pan L BMC Biol; 2021 Sep; 19(1):189. PubMed ID: 34488759 [TBL] [Abstract][Full Text] [Related]
11. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes. Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121 [TBL] [Abstract][Full Text] [Related]
12. Mapping nucleosome positions using DNase-seq. Zhong J; Luo K; Winter PS; Crawford GE; Iversen ES; Hartemink AJ Genome Res; 2016 Mar; 26(3):351-64. PubMed ID: 26772197 [TBL] [Abstract][Full Text] [Related]
13. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Hesselberth JR; Chen X; Zhang Z; Sabo PJ; Sandstrom R; Reynolds AP; Thurman RE; Neph S; Kuehn MS; Noble WS; Fields S; Stamatoyannopoulos JA Nat Methods; 2009 Apr; 6(4):283-9. PubMed ID: 19305407 [TBL] [Abstract][Full Text] [Related]
14. UME6, a negative regulator of meiosis in Saccharomyces cerevisiae, contains a C-terminal Zn2Cys6 binuclear cluster that binds the URS1 DNA sequence in a zinc-dependent manner. Anderson SF; Steber CM; Esposito RE; Coleman JE Protein Sci; 1995 Sep; 4(9):1832-43. PubMed ID: 8528081 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide discovery of active regulatory elements and transcription factor footprints in Ho MCW; Quintero-Cadena P; Sternberg PW Genome Res; 2017 Dec; 27(12):2108-2119. PubMed ID: 29074739 [TBL] [Abstract][Full Text] [Related]
16. Most of the tight positional conservation of transcription factor binding sites near the transcription start site reflects their co-localization within regulatory modules. Acevedo-Luna N; Mariño-Ramírez L; Halbert A; Hansen U; Landsman D; Spouge JL BMC Bioinformatics; 2016 Nov; 17(1):479. PubMed ID: 27871221 [TBL] [Abstract][Full Text] [Related]
17. Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data. Piper J; Elze MC; Cauchy P; Cockerill PN; Bonifer C; Ott S Nucleic Acids Res; 2013 Nov; 41(21):e201. PubMed ID: 24071585 [TBL] [Abstract][Full Text] [Related]
18. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Wang J; Zhuang J; Iyer S; Lin X; Whitfield TW; Greven MC; Pierce BG; Dong X; Kundaje A; Cheng Y; Rando OJ; Birney E; Myers RM; Noble WS; Snyder M; Weng Z Genome Res; 2012 Sep; 22(9):1798-812. PubMed ID: 22955990 [TBL] [Abstract][Full Text] [Related]
19. Aflatoxin non-productivity of Aspergillus oryzae caused by loss of function in the aflJ gene product. Kiyota T; Hamada R; Sakamoto K; Iwashita K; Yamada O; Mikami S J Biosci Bioeng; 2011 May; 111(5):512-7. PubMed ID: 21342785 [TBL] [Abstract][Full Text] [Related]