BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25883314)

  • 1. Chromosome aberration model combining radiation tracks, chromatin structure, DSB repair and chromatin mobility.
    Friedland W; Kundrát P
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):71-4. PubMed ID: 25883314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation.
    Friedland W; Kundrát P
    Mutat Res; 2013 Aug; 756(1-2):213-23. PubMed ID: 23811166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized time-dependent model of radiation-induced chromosomal aberrations in normal and repair-deficient human cells.
    Ponomarev AL; George K; Cucinotta FA
    Radiat Res; 2014 Mar; 181(3):284-92. PubMed ID: 24611656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Track structure, radiation quality and initial radiobiological events: considerations based on the PARTRAC code experience.
    Alloni D; Campa A; Friedland W; Mariotti L; Ottolenghi A
    Int J Radiat Biol; 2012 Jan; 88(1-2):77-86. PubMed ID: 21957961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MODELING STUDIES ON DICENTRICS INDUCTION AFTER SUB-MICROMETER FOCUSED ION BEAM GRID IRRADIATION.
    Friedland W; Kundrát P; Schmitt E; Becker J; Ilicic K; Greubel C; Reindl J; Siebenwirth C; Schmid TE; Dollinger G
    Radiat Prot Dosimetry; 2019 May; 183(1-2):40-44. PubMed ID: 30726972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic modelling of DSB repair after photon and ion irradiation.
    Friedland W; Kundrát P; Jacob P
    Int J Radiat Biol; 2012 Jan; 88(1-2):129-36. PubMed ID: 21823824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative biological effectiveness of high linear energy transfer α-particles for the induction of DNA-double-strand breaks, chromosome aberrations and reproductive cell death in SW-1573 lung tumour cells.
    Franken NA; Hovingh S; Ten Cate R; Krawczyk P; Stap J; Hoebe R; Aten J; Barendsen GW
    Oncol Rep; 2012 Mar; 27(3):769-74. PubMed ID: 22200791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin mobility is increased at sites of DNA double-strand breaks.
    Krawczyk PM; Borovski T; Stap J; Cijsouw T; ten Cate R; Medema JP; Kanaar R; Franken NA; Aten JA
    J Cell Sci; 2012 May; 125(Pt 9):2127-33. PubMed ID: 22328517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical modelling of DNA DSB repair following high LET irradiation.
    Salnikov IV; Eidelman YA; Andreev SG
    Radiats Biol Radioecol; 2007; 47(3):292-6. PubMed ID: 17867497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulation of ionizing radiation induced DNA strand breaks utilizing coarse grained high-order chromatin structures.
    Liang Y; Yang G; Liu F; Wang Y
    Phys Med Biol; 2016 Jan; 61(1):445-60. PubMed ID: 26675481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic properties of radiation-induced DSB: DSB distributions in large scale chromatin loops, the HPRT gene and within the visible volumes of DNA repair foci.
    Ponomarev AL; Costes SV; Cucinotta FA
    Int J Radiat Biol; 2008 Nov; 84(11):916-29. PubMed ID: 19016140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dose response of gamma rays and iron nuclei for induction of chromosomal aberrations in normal and repair-deficient cell lines.
    George KA; Hada M; Jackson LJ; Elliott T; Kawata T; Pluth JM; Cucinotta FA
    Radiat Res; 2009 Jun; 171(6):752-63. PubMed ID: 19580482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-micrometer 20MeV protons or 45MeV lithium spot irradiation enhances yields of dicentric chromosomes due to clustering of DNA double-strand breaks.
    Schmid TE; Friedland W; Greubel C; Girst S; Reindl J; Siebenwirth C; Ilicic K; Schmid E; Multhoff G; Schmitt E; Kundrát P; Dollinger G
    Mutat Res Genet Toxicol Environ Mutagen; 2015 Nov; 793():30-40. PubMed ID: 26520370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic simulation of DNA double-strand break repair by non-homologous end joining based on track structure calculations.
    Friedland W; Jacob P; Kundrát P
    Radiat Res; 2010 May; 173(5):677-88. PubMed ID: 20426668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DSB repair model for mammalian cells in early S and G1 phases of the cell cycle: application to damage induced by ionizing radiation of different quality.
    Taleei R; Girard PM; Nikjoo H
    Mutat Res Genet Toxicol Environ Mutagen; 2015 Feb; 779():5-14. PubMed ID: 25813721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bi-Exponential Repair Algorithm for Radiation-Induced Double-Strand Breaks: Application to Simulation of Chromosome Aberrations.
    Plante I; Slaba T; Shavers Z; Hada M
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31744120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic simulation of radiation damage to DNA and its repair: on the track towards systems radiation biology modelling.
    Friedland W; Jacob P; Kundrát P
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):542-8. PubMed ID: 21131661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in the biophysical and molecular bases of radiation cytogenetics.
    Sasaki MS
    Int J Radiat Biol; 2009 Jan; 85(1):26-47. PubMed ID: 19205983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RITCARD: Radiation-Induced Tracks, Chromosome Aberrations, Repair and Damage.
    Plante I; Ponomarev A; Patel Z; Slaba T; Hada M
    Radiat Res; 2019 Sep; 192(3):282-298. PubMed ID: 31295089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cell-by-cell Monte Carlo simulation for assessing radiation-induced DNA double strand breaks.
    Lee BH; Wang CC
    Phys Med; 2019 Jun; 62():140-151. PubMed ID: 31153394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.