These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 25884049)
21. Evidence of substituent-induced electronic interplay. Effect of the remote aromatic ring substituent of phenyl benzoates on the sensitivity of the carbonyl unit to electronic effects of phenyl or benzoyl ring substituents. Neuvonen H; Neuvonen K; Pasanen P J Org Chem; 2004 May; 69(11):3794-800. PubMed ID: 15153011 [TBL] [Abstract][Full Text] [Related]
22. Theoretical and spectroscopic study of the effect of ring substitution on the adsorption of anisole on platinum. Bonalumi N; Vargas A; Ferri D; Baiker A J Phys Chem B; 2006 May; 110(20):9956-65. PubMed ID: 16706453 [TBL] [Abstract][Full Text] [Related]
23. Influence of the substituents on the CH...π interaction: benzene-methane complex. Karthikeyan S; Ramanathan V; Mishra BK J Phys Chem A; 2013 Aug; 117(30):6687-94. PubMed ID: 23822641 [TBL] [Abstract][Full Text] [Related]
24. Study of polycyclic aromatic hydrocarbons adsorbed on graphene using density functional theory with empirical dispersion correction. Ershova OV; Lillestolen TC; Bichoutskaia E Phys Chem Chem Phys; 2010 Jun; 12(24):6483-91. PubMed ID: 20383394 [TBL] [Abstract][Full Text] [Related]
25. Effects of shape, size, and pyrene doping on electronic properties of graphene nanoflakes. Kuamit T; Ratanasak M; Rungnim C; Parasuk V J Mol Model; 2017 Nov; 23(12):355. PubMed ID: 29177727 [TBL] [Abstract][Full Text] [Related]
26. Efficient n-doping of graphene films by APPE (aminophenyl propargyl ether): a substituent effect. Kim Y; Yoo JM; Jeon HR; Hong BH Phys Chem Chem Phys; 2013 Nov; 15(42):18353-6. PubMed ID: 24071739 [TBL] [Abstract][Full Text] [Related]
27. Fast and accurate computational modeling of adsorption on graphene: a dispersion interaction challenge. Gordeev EG; Polynski MV; Ananikov VP Phys Chem Chem Phys; 2013 Nov; 15(43):18815-21. PubMed ID: 24092233 [TBL] [Abstract][Full Text] [Related]
28. Experimental and theoretical study of substituent effects of iodonitrobenzenes. Yao L; Du L; Ge M; Ma C; Wang D J Phys Chem A; 2007 Oct; 111(40):10105-10. PubMed ID: 17880050 [TBL] [Abstract][Full Text] [Related]
29. Density functional theory study of π-aromatic interaction of benzene, phenol, catechol, dopamine isolated dimers and adsorbed on graphene surface. de Moraes EE; Tonel MZ; Fagan SB; Barbosa MC J Mol Model; 2019 Sep; 25(10):302. PubMed ID: 31486895 [TBL] [Abstract][Full Text] [Related]
30. Assessment of density functional approximations for N Rayón VM; Cabria I J Comput Chem; 2022 Aug; 43(21):1403-1419. PubMed ID: 35668546 [TBL] [Abstract][Full Text] [Related]
31. Substituent effects on the edge-to-face aromatic interactions. Lee EC; Hong BH; Lee JY; Kim JC; Kim D; Kim Y; Tarakeshwar P; Kim KS J Am Chem Soc; 2005 Mar; 127(12):4530-7. PubMed ID: 15783237 [TBL] [Abstract][Full Text] [Related]
32. Substituent effects in the so-called cationπ interaction of benzene and its boron-nitrogen doped analogues: overlooked role of σ-skeleton. Yourdkhani S; Chojecki M; Korona T Phys Chem Chem Phys; 2019 Mar; 21(12):6453-6466. PubMed ID: 30839951 [TBL] [Abstract][Full Text] [Related]
33. Impact of ligands on CO2 adsorption in metal-organic frameworks: first principles study of the interaction of CO2 with functionalized benzenes. I. Inductive effects on the aromatic ring. Torrisi A; Mellot-Draznieks C; Bell RG J Chem Phys; 2009 May; 130(19):194703. PubMed ID: 19466851 [TBL] [Abstract][Full Text] [Related]
35. Theoretical study on the torsional potential of alkyl, donor, and acceptor substituted bithiophene: the hidden role of noncovalent interaction and backbone conjugation. Lin TJ; Lin ST Phys Chem Chem Phys; 2015 Feb; 17(6):4127-36. PubMed ID: 25563168 [TBL] [Abstract][Full Text] [Related]
36. Changes in Electron Structure of the Triple Bond in Substituted Acetylene and Diacetylene Derivatives. Jabłoński M; Krygowski TM Chemphyschem; 2020 Aug; 21(16):1847-1857. PubMed ID: 32511830 [TBL] [Abstract][Full Text] [Related]
37. Substituent effect on the acid-promoted hydrolysis of 2-aryloxazolin-5-one: normal vs reverse. Zeng Y; Xue Y; Yan G J Phys Chem A; 2011 May; 115(19):4995-5004. PubMed ID: 21524108 [TBL] [Abstract][Full Text] [Related]
38. Propagation of polar substituent effects in 1-(substituted phenyl)-6,7-dimethoxy-3,4-dihydro- and -1,2,3,4-tetrahydroisoquinolines as explained by resonance polarization concept. Neuvonen K; Fülöp F; Neuvonen H; Koch A; Kleinpeter E; Pihlaja K J Org Chem; 2005 Dec; 70(26):10670-8. PubMed ID: 16355984 [TBL] [Abstract][Full Text] [Related]
39. Methyl and phenyl substitution effects on the proton affinities of hydrides of first and second row elements and substituent effects on the proton affinities of ring carbons in benzene: a DFT study. Pham-Cam N; Nguyen MT; Chandra AK J Phys Chem A; 2006 Apr; 110(13):4509-15. PubMed ID: 16571057 [TBL] [Abstract][Full Text] [Related]
40. Cooperativity of pi-stacking and hydrogen bonding interactions and substituent effects on X-ben//pyr...H-F complexes. Ebrahimi A; Habibi M; Neyband RS; Gholipour AR Phys Chem Chem Phys; 2009 Dec; 11(48):11424-31. PubMed ID: 20024412 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]