These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 25885570)

  • 21. An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings.
    Powell LC; Khan S; Chinga-Carrasco G; Wright CJ; Hill KE; Thomas DW
    Carbohydr Polym; 2016 Feb; 137():191-197. PubMed ID: 26686120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro biological responses to nanofibrillated cellulose by human dermal, lung and immune cells: surface chemistry aspect.
    Lopes VR; Sanchez-Martinez C; Strømme M; Ferraz N
    Part Fibre Toxicol; 2017 Jan; 14(1):1. PubMed ID: 28069023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529.
    Mohite BV; Patil SV
    Carbohydr Polym; 2014 Jun; 106():132-41. PubMed ID: 24721060
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Mini Review on Plant-based Nanocellulose: Production, Sources, Modifications and Its Potential in Drug Delivery Applications.
    Pachuau LS
    Mini Rev Med Chem; 2015; 15(7):543-52. PubMed ID: 25877601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting the Dielectric Properties of Nanocellulose-Modified Presspaper Based on the Multivariate Analysis Method.
    Zhou Y; Huang X; Huang J; Zhang L; Zhou Z
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29933631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time.
    Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H
    Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of drug interactions with nanofibrillar cellulose.
    Kolakovic R; Peltonen L; Laukkanen A; Hellman M; Laaksonen P; Linder MB; Hirvonen J; Laaksonen T
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1238-44. PubMed ID: 23774185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of nanocellulose gels and films from invasive tree species.
    Almeida RO; Ramos A; Alves L; Potsi E; Ferreira PJT; Carvalho MGVS; Rasteiro MG; Gamelas JAF
    Int J Biol Macromol; 2021 Oct; 188():1003-1011. PubMed ID: 34371043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans.
    Chen YW; Lee HV; Juan JC; Phang SM
    Carbohydr Polym; 2016 Oct; 151():1210-1219. PubMed ID: 27474672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability.
    Aulin C; Salazar-Alvarez G; Lindström T
    Nanoscale; 2012 Oct; 4(20):6622-8. PubMed ID: 22976562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The crystallinity of cellulose controls the physical distribution of sorbed water and the capacity to present water for chemical degradation of a solid drug.
    Höckerfelt MH; Alderborn G
    Int J Pharm; 2014 Dec; 477(1-2):326-33. PubMed ID: 25455777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of nanocellulose on mechanics and morphology of polyvinyl alcohol xerogels.
    Pramanik R; Ganivada B; Ram F; Shanmuganathan K; Arockiarajan A
    J Mech Behav Biomed Mater; 2019 Feb; 90():275-283. PubMed ID: 30388512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pyrus pyrifolia fruit peel as sustainable source for spherical and porous network based nanocellulose synthesis via one-pot hydrolysis system.
    Chen YW; Hasanulbasori MA; Chiat PF; Lee HV
    Int J Biol Macromol; 2019 Feb; 123():1305-1319. PubMed ID: 30292586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper.
    Ferrer A; Filpponen I; Rodríguez A; Laine J; Rojas OJ
    Bioresour Technol; 2012 Dec; 125():249-55. PubMed ID: 23026341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cobalt (II) chloride promoted formation of honeycomb patterned cellulose acetate films.
    Naboka O; Sanz-Velasco A; Lundgren P; Enoksson P; Gatenholm P
    J Colloid Interface Sci; 2012 Feb; 367(1):485-93. PubMed ID: 22074692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extraction and characterization of nanocellulose structures from raw cotton linter.
    Morais JP; Rosa Mde F; de Souza Filho Mde S; Nascimento LD; do Nascimento DM; Cassales AR
    Carbohydr Polym; 2013 Jan; 91(1):229-35. PubMed ID: 23044127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simple Green Route to Performance Improvement of Fully Bio-Based Linseed Oil Coating Using Nanofibrillated Cellulose.
    Veigel S; Lems EM; Grüll G; Hansmann C; Rosenau T; Zimmermann T; Gindl-Altmutter W
    Polymers (Basel); 2017 Sep; 9(9):. PubMed ID: 30965729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adhesion and Stability of Nanocellulose Coatings on Flat Polymer Films and Textiles.
    Saremi R; Borodinov N; Laradji AM; Sharma S; Luzinov I; Minko S
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose.
    Cervin NT; Andersson L; Ng JB; Olin P; Bergström L; Wågberg L
    Biomacromolecules; 2013 Feb; 14(2):503-11. PubMed ID: 23252421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors.
    Yan C; Wang J; Kang W; Cui M; Wang X; Foo CY; Chee KJ; Lee PS
    Adv Mater; 2014 Apr; 26(13):2022-7. PubMed ID: 24343930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.