BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 25885636)

  • 21. Identification of allelic heterogeneity at type-2 diabetes loci and impact on prediction.
    Klimentidis YC; Zhou J; Wineinger NE
    PLoS One; 2014; 9(11):e113072. PubMed ID: 25393876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide prediction using Bayesian additive regression trees.
    Waldmann P
    Genet Sel Evol; 2016 Jun; 48(1):42. PubMed ID: 27286957
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of methods for the implementation of genome-assisted evaluation of Spanish dairy cattle.
    Jiménez-Montero JA; González-Recio O; Alenda R
    J Dairy Sci; 2013 Jan; 96(1):625-34. PubMed ID: 23102955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential contribution of genomic regions to marked genetic variation and prediction of quantitative traits in broiler chickens.
    Abdollahi-Arpanahi R; Morota G; Valente BD; Kranis A; Rosa GJ; Gianola D
    Genet Sel Evol; 2016 Feb; 48():10. PubMed ID: 26842494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Loci of TCF7L2, HHEX and IDE on chromosome 10q and the susceptibility of their genetic polymorphisms to type 2 diabetes.
    Nordman S; Ostenson CG; Efendic S; Gu HF
    Exp Clin Endocrinol Diabetes; 2009 Apr; 117(4):186-90. PubMed ID: 19053027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Type-2 diabetes-associated variants with cross-trait relevance: Post-GWAs strategies for biological function interpretation.
    Frau F; Crowther D; Ruetten H; Allebrandt KV
    Mol Genet Metab; 2017 May; 121(1):43-50. PubMed ID: 28385534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative analysis of the GBLUP, emBayesB, and GWAS algorithms to predict genetic values in large yellow croaker (Larimichthys crocea).
    Dong L; Xiao S; Wang Q; Wang Z
    BMC Genomics; 2016 Jun; 17():460. PubMed ID: 27301965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel epigenetic determinants of type 2 diabetes in Mexican-American families.
    Kulkarni H; Kos MZ; Neary J; Dyer TD; Kent JW; Göring HH; Cole SA; Comuzzie AG; Almasy L; Mahaney MC; Curran JE; Blangero J; Carless MA
    Hum Mol Genet; 2015 Sep; 24(18):5330-44. PubMed ID: 26101197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ridge, Lasso and Bayesian additive-dominance genomic models.
    Azevedo CF; de Resende MD; E Silva FF; Viana JM; Valente MS; Resende MF; Muñoz P
    BMC Genet; 2015 Aug; 16():105. PubMed ID: 26303864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity to prior specification in Bayesian genome-based prediction models.
    Lehermeier C; Wimmer V; Albrecht T; Auinger HJ; Gianola D; Schmid VJ; Schön CC
    Stat Appl Genet Mol Biol; 2013 Jun; 12(3):375-91. PubMed ID: 23629460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of alternative approaches to single-trait genomic prediction using genotyped and non-genotyped Hanwoo beef cattle.
    Lee J; Cheng H; Garrick D; Golden B; Dekkers J; Park K; Lee D; Fernando R
    Genet Sel Evol; 2017 Jan; 49(1):2. PubMed ID: 28093065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide association studies and type 2 diabetes.
    Wheeler E; Barroso I
    Brief Funct Genomics; 2011 Mar; 10(2):52-60. PubMed ID: 21436302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Personalized risk prediction for type 2 diabetes: the potential of genetic risk scores.
    Läll K; Mägi R; Morris A; Metspalu A; Fischer K
    Genet Med; 2017 Mar; 19(3):322-329. PubMed ID: 27513194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cross-tissue and tissue-specific eQTLs: partitioning the heritability of a complex trait.
    Torres JM; Gamazon ER; Parra EJ; Below JE; Valladares-Salgado A; Wacher N; Cruz M; Hanis CL; Cox NJ
    Am J Hum Genet; 2014 Nov; 95(5):521-34. PubMed ID: 25439722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional annotation of sixty-five type-2 diabetes risk SNPs and its application in risk prediction.
    Wu Y; Jing R; Dong Y; Kuang Q; Li Y; Huang Z; Gan W; Xue Y; Li Y; Li M
    Sci Rep; 2017 Mar; 7():43709. PubMed ID: 28262806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of GMDR-GPU for gene-gene interaction analysis and its application to WTCCC GWAS data for type 2 diabetes.
    Zhu Z; Tong X; Zhu Z; Liang M; Cui W; Su K; Li MD; Zhu J
    PLoS One; 2013; 8(4):e61943. PubMed ID: 23626757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural equation modeling for hypertension and type 2 diabetes based on multiple SNPs and multiple phenotypes.
    Jeon S; Shin JY; Yee J; Park T; Park M
    PLoS One; 2019; 14(9):e0217189. PubMed ID: 31513605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrating regulatory features data for prediction of functional disease-associated SNPs.
    Dong SS; Guo Y; Yao S; Chen YX; He MN; Zhang YJ; Chen XF; Chen JB; Yang TL
    Brief Bioinform; 2019 Jan; 20(1):26-32. PubMed ID: 28968709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Progress in defining the genetic contribution to type 2 diabetes susceptibility.
    Morris AP
    Curr Opin Genet Dev; 2018 Jun; 50():41-51. PubMed ID: 29477131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Contribution of Low-Frequency and Rare Coding Variation to Susceptibility to Type 2 Diabetes.
    Flannick J
    Curr Diab Rep; 2019 Apr; 19(5):25. PubMed ID: 30957210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.