These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 25886642)

  • 1. Structure based approach for understanding organism specific recognition of protein-RNA complexes.
    Nagarajan R; Chothani SP; Ramakrishnan C; Sekijima M; Gromiha MM
    Biol Direct; 2015 Mar; 10():8. PubMed ID: 25886642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the recognition mechanism of protein-RNA complexes using energy based approach.
    Gromiha MM; Yokota K; Fukui K
    Curr Protein Pept Sci; 2010 Nov; 11(7):629-38. PubMed ID: 20887255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid residue doublet propensity in the protein-RNA interface and its application to RNA interface prediction.
    Kim OT; Yura K; Go N
    Nucleic Acids Res; 2006; 34(22):6450-60. PubMed ID: 17130160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain.
    Lee KW; Briggs JM
    Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNABindR: a server for analyzing and predicting RNA-binding sites in proteins.
    Terribilini M; Sander JD; Lee JH; Zaback P; Jernigan RL; Honavar V; Dobbs D
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W578-84. PubMed ID: 17483510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crystal structures of T. thermophilus lysyl-tRNA synthetase complexed with E. coli tRNA(Lys) and a T. thermophilus tRNA(Lys) transcript: anticodon recognition and conformational changes upon binding of a lysyl-adenylate analogue.
    Cusack S; Yaremchuk A; Tukalo M
    EMBO J; 1996 Nov; 15(22):6321-34. PubMed ID: 8947055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Similarities and differences in tRNA identity between Escherichia coli and Saccharomyces cerevisiae: evolutionary conservation and divergence.
    Nameki N; Asahara H; Tamura K; Himeno H; Hasegawa T; Shimizu M
    Nucleic Acids Symp Ser; 1995; (34):205-6. PubMed ID: 8841624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-RNA interactions: structural analysis and functional classes.
    Ellis JJ; Broom M; Jones S
    Proteins; 2007 Mar; 66(4):903-11. PubMed ID: 17186525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal protein-RNA area, OPRA: a propensity-based method to identify RNA-binding sites on proteins.
    Pérez-Cano L; Fernández-Recio J
    Proteins; 2010 Jan; 78(1):25-35. PubMed ID: 19714772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting RNA-binding sites in proteins using the interaction propensity of amino acid triplets.
    Yun MR; Byun Y; Han K
    Protein Pept Lett; 2010 Sep; 17(9):1102-10. PubMed ID: 20509851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new residue-nucleotide propensity potential with structural information considered for discriminating protein-RNA docking decoys.
    Li CH; Cao LB; Su JG; Yang YX; Wang CX
    Proteins; 2012 Jan; 80(1):14-24. PubMed ID: 21953889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of conserved nucleotides in building the 16 S rRNA binding site for ribosomal protein S15.
    Serganov A; Bénard L; Portier C; Ennifar E; Garber M; Ehresmann B; Ehresmann C
    J Mol Biol; 2001 Jan; 305(4):785-803. PubMed ID: 11162092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based analysis of protein-RNA interactions using the program ENTANGLE.
    Allers J; Shamoo Y
    J Mol Biol; 2001 Aug; 311(1):75-86. PubMed ID: 11469858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting protein-binding RNA nucleotides using the feature-based removal of data redundancy and the interaction propensity of nucleotide triplets.
    Choi S; Han K
    Comput Biol Med; 2013 Nov; 43(11):1687-97. PubMed ID: 24209914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase.
    Archontis G; Simonson T; Karplus M
    J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational modeling of protein-RNA complex structures.
    Tuszynska I; Matelska D; Magnus M; Chojnowski G; Kasprzak JM; Kozlowski LP; Dunin-Horkawicz S; Bujnicki JM
    Methods; 2014 Feb; 65(3):310-9. PubMed ID: 24083976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covariance analysis of RNA recognition motifs identifies functionally linked amino acids.
    Crowder S; Holton J; Alber T
    J Mol Biol; 2001 Jul; 310(4):793-800. PubMed ID: 11453688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A MOTIF-BASED METHOD FOR PREDICTING INTERFACIAL RESIDUES IN BOTH THE RNA AND PROTEIN COMPONENTS OF PROTEIN-RNA COMPLEXES.
    Muppirala U; Lewis BA; Mann CM; Dobbs D
    Pac Symp Biocomput; 2016; 21():445-455. PubMed ID: 26776208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical analysis of atomic contacts at RNA-protein interfaces.
    Treger M; Westhof E
    J Mol Recognit; 2001; 14(4):199-214. PubMed ID: 11500966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy based approach for understanding the recognition mechanism in protein-protein complexes.
    Gromiha MM; Yokota K; Fukui K
    Mol Biosyst; 2009 Dec; 5(12):1779-86. PubMed ID: 19593470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.