BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 25886813)

  • 1. Identification and Functional Characterizations of N-Terminal α-N-Methylation and Phosphorylation of Serine 461 in Human Poly(ADP-ribose) Polymerase 3.
    Dai X; Rulten SL; You C; Caldecott KW; Wang Y
    J Proteome Res; 2015 Jun; 14(6):2575-82. PubMed ID: 25886813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The PARP3- and ATM-dependent phosphorylation of APLF facilitates DNA double-strand break repair.
    Fenton AL; Shirodkar P; Macrae CJ; Meng L; Koch CA
    Nucleic Acids Res; 2013 Apr; 41(7):4080-92. PubMed ID: 23449221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of DNA ADP-ribosyltransferase activities of PARP2 and PARP3: new insights into DNA ADP-ribosylation.
    Zarkovic G; Belousova EA; Talhaoui I; Saint-Pierre C; Kutuzov MM; Matkarimov BT; Biard D; Gasparutto D; Lavrik OI; Ishchenko AA
    Nucleic Acids Res; 2018 Mar; 46(5):2417-2431. PubMed ID: 29361132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression.
    Boehler C; Gauthier LR; Mortusewicz O; Biard DS; Saliou JM; Bresson A; Sanglier-Cianferani S; Smith S; Schreiber V; Boussin F; Dantzer F
    Proc Natl Acad Sci U S A; 2011 Feb; 108(7):2783-8. PubMed ID: 21270334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dna is a New Target of Parp3.
    Belousova EA; Ishchenko АA; Lavrik OI
    Sci Rep; 2018 Mar; 8(1):4176. PubMed ID: 29520010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Development of a Biotinylated NAD
    Ji M; Wang L; Xue N; Lai F; Zhang S; Jin J; Chen X
    SLAS Discov; 2018 Jul; 23(6):545-553. PubMed ID: 29676938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling.
    van Beek L; McClay É; Patel S; Schimpl M; Spagnolo L; Maia de Oliveira T
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34066057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3.
    Beck C; Robert I; Reina-San-Martin B; Schreiber V; Dantzer F
    Exp Cell Res; 2014 Nov; 329(1):18-25. PubMed ID: 25017100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2B(Glu2).
    Grundy GJ; Polo LM; Zeng Z; Rulten SL; Hoch NC; Paomephan P; Xu Y; Sweet SM; Thorne AW; Oliver AW; Matthews SJ; Pearl LH; Caldecott KW
    Nat Commun; 2016 Aug; 7():12404. PubMed ID: 27530147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites.
    Altmeyer M; Messner S; Hassa PO; Fey M; Hottiger MO
    Nucleic Acids Res; 2009 Jun; 37(11):3723-38. PubMed ID: 19372272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PARP3 comes to light as a prime target in cancer therapy.
    Rodriguez-Vargas JM; Nguekeu-Zebaze L; Dantzer F
    Cell Cycle; 2019 Jun; 18(12):1295-1301. PubMed ID: 31095444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PARP3 controls TGFβ and ROS driven epithelial-to-mesenchymal transition and stemness by stimulating a TG2-Snail-E-cadherin axis.
    Karicheva O; Rodriguez-Vargas JM; Wadier N; Martin-Hernandez K; Vauchelles R; Magroun N; Tissier A; Schreiber V; Dantzer F
    Oncotarget; 2016 Sep; 7(39):64109-64123. PubMed ID: 27579892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic investigation of phosphorylation sites in poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase.
    Gagné JP; Moreel X; Gagné P; Labelle Y; Droit A; Chevalier-Paré M; Bourassa S; McDonald D; Hendzel MJ; Prigent C; Poirier GG
    J Proteome Res; 2009 Feb; 8(2):1014-29. PubMed ID: 19105632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New perspectives on the plant PARP family: Arabidopsis PARP3 is inactive, and PARP1 exhibits predominant poly (ADP-ribose) polymerase activity in response to DNA damage.
    Gu Z; Pan W; Chen W; Lian Q; Wu Q; Lv Z; Cheng X; Ge X
    BMC Plant Biol; 2019 Aug; 19(1):364. PubMed ID: 31426748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADP-ribosylation of DNA and RNA.
    Groslambert J; Prokhorova E; Ahel I
    DNA Repair (Amst); 2021 Sep; 105():103144. PubMed ID: 34116477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents.
    Haince JF; Kozlov S; Dawson VL; Dawson TM; Hendzel MJ; Lavin MF; Poirier GG
    J Biol Chem; 2007 Jun; 282(22):16441-53. PubMed ID: 17428792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(ADP-ribose) polymerase-1 activation during DNA damage and repair.
    Dantzer F; Amé JC; Schreiber V; Nakamura J; Ménissier-de Murcia J; de Murcia G
    Methods Enzymol; 2006; 409():493-510. PubMed ID: 16793420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A key role for poly(ADP-ribose) polymerase 3 in ectodermal specification and neural crest development.
    Rouleau M; Saxena V; Rodrigue A; Paquet ER; Gagnon A; Hendzel MJ; Masson JY; Ekker M; Poirier GG
    PLoS One; 2011 Jan; 6(1):e15834. PubMed ID: 21264220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PARP3 interacts with FoxM1 to confer glioblastoma cell radioresistance.
    Quan JJ; Song JN; Qu JQ
    Tumour Biol; 2015 Nov; 36(11):8617-24. PubMed ID: 26040766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative site-specific ADP-ribosylation profiling of DNA-dependent PARPs.
    Gagné JP; Ethier C; Defoy D; Bourassa S; Langelier MF; Riccio AA; Pascal JM; Moon KM; Foster LJ; Ning Z; Figeys D; Droit A; Poirier GG
    DNA Repair (Amst); 2015 Jun; 30():68-79. PubMed ID: 25800440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.